The method for measurement of the three-dimensional scoliosis angle from standard radiographs

Author:

Główka Paweł,Politarczyk Wojciech,Janusz Piotr,Woźniak Łukasz,Kotwicki Tomasz

Abstract

Abstract Background Three-dimensional idiopathic scoliosis cannot be accurately assessed with the aid of a single plane parameter – the Cobb angle. We propose a novel method for evaluating the three-dimensional (3D) pattern of scoliosis based on two X-rays (PA and lateral). The proposed method consists of the measurements of the angles between the upper endplate of the upper-end vertebra and the lower endplate of the lower-end vertebra (3D scoliosis angle). Methods The 3D-angles of thirty scoliosis curves were measured with either computed tomography (CT) or digitally reconstructed radiographs (DRRs): PA and lateral. CT was used as a reference. In the case of CT, the 3D angle was calculated based on the coordinates of three points situated on the upper endplate and those of three points situated on the lower endplate of the scoliosis curve. In the case of the DRR, the 3D angle was calculated using the four-angle method: the angles formed by the endplates of the curve with the transverse plane. The results were tested with the Student’s t-test, and the agreement of measurements was tested with the intraclass correlation coefficient. Results There was no significant difference between the 3D-angle measurements obtained with DRRs versus CT, p > 0.05. There was, however, a significant difference between the 3D-scoliosis angle and the Cobb angle measurements performed based on the X-rays. The reproducibility and reliability of 3D angle measurements were high. Conclusions Based on two standard radiographs, PA and lateral, it is possible to calculate the 3D scoliosis angle. The proposed method facilitates 3D-scoliosis assessment without the use of sophisticated devices. Considering the 3D nature of AIS, the 3D parameters of the spine may help to apply a more effective treatment and estimate a more precise prognosis for patient with scoliosis.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3