The importance of intervertebral disc material model on the prediction of mechanical function of the cervical spine

Author:

Komeili Amin,Rasoulian Akbar,Moghaddam Fatemeh,El-Rich Marwan,Li Le Ping

Abstract

Abstract Background Linear elastic, hyperelastic, and multiphasic material constitutive models are frequently used for spinal intervertebral disc simulations. While the characteristics of each model are known, their effect on spine mechanical response requires a careful investigation. The use of advanced material models may not be applicable when material constants are not available, model convergence is unlikely, and computational time is a concern. On the other hand, poor estimations of tissue’s mechanical response are likely if the spine model is oversimplified. In this study, discrepancies in load response introduced by material models will be investigated. Methods Three fiber-reinforced C2-C3 disc models were developed with linear elastic, hyperelastic, and biphasic behaviors. Three different loading modes were investigated: compression, flexion and extension in quasi-static and dynamic conditions. The deformed disc height, disc fluid pressure, range of motion, and stresses were compared. Results Results indicated that the intervertebral disc material model has a strong effect on load-sharing and disc height change when compression and flexion were applied. The predicted mechanical response of three models under extension had less discrepancy than its counterparts under flexion and compression. The fluid-solid interaction showed more relevance in dynamic than quasi-static loading conditions. The fiber-reinforced linear elastic and hyperelastic material models underestimated the load-sharing of the intervertebral disc annular collagen fibers. Conclusion This study confirmed the central role of the disc fluid pressure in spinal load-sharing and highlighted loading conditions where linear elastic and hyperelastic models predicted energy distribution different than that of the biphasic model.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical properties, in vitro degradation and cytocompatibility of woven textiles manufactured from PLA/PCL commingled yarns;Journal of the Mechanical Behavior of Biomedical Materials;2024-02

2. Evaluation of rigid, semi-rigid, and dynamic stabilization of the cervical spine;2023 30th National and 8th International Iranian Conference on Biomedical Engineering (ICBME);2023-11-30

3. The influence of over-distraction on biomechanical response of cervical spine post anterior interbody fusion: a comprehensive finite element study;Frontiers in Bioengineering and Biotechnology;2023-08-15

4. Comparison of biomechanical parameters of two Chinese cervical spine rotation manipulations based on motion capture and finite element analysis;Frontiers in Bioengineering and Biotechnology;2023-07-27

5. Modelling of Intervertebral Disc (IVD) with Structured Mesh and Crosswise Collagen Fibers;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3