Author:
Shu Juntao,Tan Anjun,Li Yan,Huang Hong,Yang Jingjing
Abstract
Abstract
Background
Elevated total alkaline phosphatase (T-ALP) levels are usually indicative of enhanced osteoblastic activity and bone conversion status and are thus considered as a key factor needed for fresh bone mineralization and synthesis. To date, there is no consistent conclusion on the association between the serum T-ALP levels and bone mineral density (BMD). Therefore, the present study focused on exploring the association of serum T-ALP with lumbar BMD among young adults.
Methods
The present cross-sectional study included 6,331 subjects included in the National Health and Nutrition Examination Survey (NHANES) during 2011–2016. The participants aged 20–40 years included 3,349 males and 2,982 females. Serum T-ALP was our main variable, lumbar BMD was our outcome variable, and additional variables were the possible impact modifiers. The relations were analysed by the trend study, weighted multiple linear regression models, smooth curve fitting, and stratified analyses.
Results
In a completely corrected multiple regression model, a negative association between serum T-ALP and lumbar BMD was discovered (β = -0.0007, 95% CI: –0.0009– –0.0005, P < 0.000001). After converting the continuous variable serum T-ALP into the categorical one, the significant negative association was still observed (P < 0.001), and in the subgroup and smooth curve fitting analyses, this negative correlation remained significant, too.
Conclusions
Our study results indicated that serum T-ALP was negatively associated with lumbar BMD among young adults. Serum T-ALP measurement in the near future might become an effective biomarker to diagnose and treat osteoporosis on time.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference33 articles.
1. Lane JM, Russell L, Khan SN. Osteoporosis. Clin Orthop Relat Res. 2000;372:139–50.
2. Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.
3. Armas LA, Recker RR. Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol Metab Clin North Am. 2012;41(3):475–86.
4. Schmah T, Marwan N, Thomsen JS, Saparin P. Long range node-strut analysis of trabecular bone microarchitecture. Med Phys. 2011;38(9):5003–11.
5. Williams C, Sapra A. Osteoporosis Markers. In: StatPearls. edn. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2021.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献