Influence of cement-augmented pedicle screws with different volumes of polymethylmethacrylate in osteoporotic lumbar vertebrae over the adjacent segments: a 3D finite element analysis

Author:

Guo Hui-zhi,Zhang Shun-cong,Guo Dan-qing,Ma Yan-huai,Yuan Kai,Li Yong-xian,Peng Jian-cheng,Li Jing-lan,Liang De,Tang Yong-chaoORCID

Abstract

Abstract Background Polymethylmethacrylate (PMMA) is commonly used for cement-augmented pedicle screw instrumentation (CAPSI) to improve the fixation stability and reduce the risk of screw loosening in the osteoporotic thoracolumbar spine. Biomechanical researches have shown that various dose of cement (1-3 ml) can be injected to enhance screw stability. To date, there have been no studies on the relationship between adjacent segment degeneration and the volume of PMMA. This study aimed to explore the influence of CAPSI with different volumes of PMMA in osteoporotic lumbar vertebrae over adjacent segments by using finite element analysis. Methods Seven different finite element models were reconstructed and simulated under different loading conditions, including (1) an intact model, (2) three single-level CAPSI models with different volumes of PMMA (1, 1.73, and 2.5 ml), and (3) three double-level CAPSI models with different volumes of PMMA (1, 1.73, and 2.5 ml). To improve the accuracy of the finite element analysis, the models of the injectable pedicle screw and bone cement were created by using a three-dimensional scanning machine and the CAPSI patient’s CT data, respectively. The range of motion (ROM), the stress of intervertebral discs, and the stress of facet in the adjacent segment were comparatively analyzed among the different models. Results The ROMs of the different segments were compared with experimental data, with good agreement under the different load conditions (21.3°, 13.55°, 13.99°, and 6.11° in flexion, extension, bending, and rotation at L3-S1 level, respectively). Compared with the intact model, the ROM, disc stresses, and facet stress in adjacent segments were found to be higher in the six operative models. Otherwise, with a larger volume of PMMA injected, the ROM, disc stresses, and facet stress slightly increased at the adjacent segment. However, the differences were insignificant with the biggest difference less than 3.8%. Conclusions CAPSI could increase the incidence of disk degeneration in the adjacent segment, while within a certain range, different volumes of PMMA provided an approximate impact over the adjacent segment degeneration.

Funder

National Construction of High-quality University Project

the project of Traditional Chinese Medicine Bureau of Guangdong Provincial

the innovation and strength project of The First Affiliated Hospital of Guangzhou University of Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3