Abstract
Abstract
Background
Gratifying long-term results are difficult to achieve when reconstructing osteoarthritic finger joints. Implant surgery is the most commonly used method to restore function and dexterity. However, all types of implant have disadvantages and may be a less favorable option in some cases, especially in young patients with a long expected lifetime and high demands on manual load. Implant related complications as loosening, instability, subsidence and stiffness are the main concerns. In this context, joint reconstruction using rib perichondrium might be a reasonable alternative in selected cases. The aim of the study was to evaluate the long-term results of finger joint reconstruction using rib perichondrial transplantation.
Methods
The study group (n = 11) consisted of eight individuals reconstructed in the proximal interphalangeal (PIP) joints and three reconstructed in the metacarpophalangeal (MCP) joints during 1974–1981. All patients were evaluated at clinical visits (median: 37 years after perichondrial transplantation, range: 34–41 years) using radiographs, disability in arm-shoulder-hand (DASH) score, Visual Analog Scale (VAS), range-of-motion (ROM) and manual strength (JAMAR).
Results
None of the 11 patients had undergone additional surgery. All of the PIP-joints (n = 8) were almost pain-free at activity (VAS 0,6) (range 0–4), had an average range-of-motion of 41 degrees (range 5–80) and a mean DASH-score of 8,3 (range 1–51). The mean strength was 41 kg compared to 44 kg in the contralateral hand (93%). The three MCP joints were almost pain-free at activity (VAS 0,7), (range 0–1). The ROM was on average 80 degrees (range 70–90) and the mean DASH-score was 2 (range 1–3). The mean strength was 43 kg compared to 53 kg in the contralateral hand (81%).
Conclusions
Perichondrium transplants restored injured PIP and MCP joints that remained essentially pain-free and mostly well-functioning without need for additional surgeries up to 41 years after the procedure. Additional studies are needed to evaluate long-term results in comparison to modern implants and to better describe the factors that determine the outcome of these procedures.
Level of evidence
Level IV, Therapeutic Study.
Funder
Landstinget i Uppsala län
Swedish Research Council
Swedish Governmental Agency for Innovation Systems
Marianne and Marcus Wallenberg Foundation
Stockholms Läns Landsting
Byggmästare Olle Enkvist Stiftelse
Swedish Society of Medicine
Novo nordisk Foundation
Erik och Edith Fernström Foundation for Medical Research
HKH Kronprinsessan Lovisas förening för barnasjukvård
Sällskapet Barnavård
Stiftelsen Frimurare Barnhuset i Stockholm
Örebro University, Örebro, Sweden
Nyckelfonden
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference52 articles.
1. Buckwalter JA. Were the hunter brothers wrong? Can surgical treatment repair articular cartilage? Iowa Orthop J. 1997;17:1–13.
2. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.
3. Skoog T, Ohlsén L, Sohn SA. Perichondrial potential for cartilagenous regeneration. Scand J Plast Reconstr Surg. 1972;6:123–5.
4. Lynch TS, Patel RM, Benedick A, Amin NH, Jones MH, Miniaci A. Systematic review of autogenous osteochondral transplant outcomes. Arthroscopy. 2015;31:746–54.
5. Angele P, Niemeyer P, Steinwachs M, Filardo G, Gomoll AH, Kon E, et al. Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24:1743–52.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献