Feasibility of artificial intelligence assisted quantitative muscle ultrasound in carpal tunnel syndrome

Author:

Kim Sun Woong,Kim Sunwoo,Shin Dongik,Choi Jae Hyeong,Sim Jung Sub,Baek SeungjunORCID,Yoon Joon ShikORCID

Abstract

Abstract Background In case of focal neuropathy, the muscle fibers innervated by the corresponding nerves are replaced with fat or fibrous tissue due to denervation, which results in increased echo intensity (EI) on ultrasonography. EI analysis can be conducted quantitatively using gray scale analysis. Mean value of pixel brightness of muscle image defined as EI. However, the accuracy achieved by using this parameter alone to differentiate between normal and abnormal muscles is limited. Recently, attempts have been made to increase the accuracy using artificial intelligence (AI) in the analysis of muscle ultrasound images. CTS is the most common disease among focal neuropathy. In this study, we aimed to verify the utility of AI assisted quantitative analysis of muscle ultrasound in CTS. Methods This is retrospective study that used data from adult who underwent ultrasonographic examination of hand muscles. The patient with CTS confirmed by electromyography and subjects without CTS were included. Ultrasound images of the unaffected hands of patients or subjects without CTS were used as controls. Ultrasonography was performed by one physician in same sonographic settings. Both conventional quantitative grayscale analysis and machine learning (ML) analysis were performed for comparison. Results A total of 47 hands with CTS and 27 control hands were analyzed. On conventional quantitative analysis, mean EI ratio (i.e. mean thenar EI/mean hypothenar EI ratio) were significantly higher in the patient group than in the control group, and the AUC was 0.76 in ROC analysis. In the analysis using machine learning, the AUC was the highest for the linear support vector classifier (AUC = 0.86). When recursive feature elimination was applied to the classifier, the AUC value improved to 0.89. Conclusion This study showed a significant increase in diagnostic accuracy when AI was used for quantitative analysis of muscle ultrasonography. If an analysis protocol using machine learning can be established and mounted on an ultrasound machine, a noninvasive and non-time-consuming muscle ultrasound examination can be conducted as an ancillary tool for diagnosis.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence as an adjunctive tool in hand and wrist surgery: a review;Artificial Intelligence Surgery;2024-09-02

2. Role of Ultrasonics in the Diagnosis and Treatment of Diseases;Handbook of Vibroacoustics, Noise and Harshness;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3