Oblique lateral interbody fusion combined with different internal fixations for the treatment of degenerative lumbar spine disease: a finite element analysis

Author:

Zhang Shuyi,Liu Zhengpeng,Lu Chenshui,Zhao Li,Feng Chao,Wang Yahui,Zhang Yilong

Abstract

Abstract Background Little is known about the biomechanical performance of different internal fixations in oblique lumbar interbody fusion (OLIF). Here, finite element (FE) analysis was used to describe the biomechanics of various internal fixations and compare and explore the stability of each fixation. Methods CT scans of a patient with lumbar degenerative disease were performed, and the l3-S1 model was constructed using relevant software. The other five FE models were constructed by simulating the model operation and adding different related implants, including (1) an intact model, (2) a stand-alone (SA) model with no instrument, (3) a unilateral pedicle screw model (UPS), (4) a unilateral pedicle screw contralateral translaminar facet screw model (UPS-CTFS), (5) a bilateral pedicle screw (BPS) model, and (6) a cortical bone trajectory screw model (CBT). Various motion loads were set by FE software to simulate lumbar vertebral activity. The software was also used to extract the range of motion (ROM) of the surgical segment, CAGE and fixation stress in the different models. Results The SA group had the greatest ROM and CAGE stress. The ROM of the BPS and UPS-CTFS was not significantly different among motion loadings. Compared with the other three models, the BPS model had lower internal fixation stress among loading conditions, and the CBT screw internal fixation had the highest stress among loads. Conclusions The BPS model provided the best biomechanical stability for OLIF. The SA model was relatively less stable. The UPS-CTFS group had reduced ROM in the fusion segments, but the stresses on the internal fixation and CAGE were relatively higher in the than in the BPS group; the CBT group had a lower flexion and extension ROM and higher rotation and lateral flexion ROM than the BPS group. The stability of the CBT group was poorer than that of the BPS and LPS-CTFS groups. The CAGE and internal fixation stress was greater in the CBT group.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3