Author:
Jiang Tao,Song Kai,Yao Yao,Zhuang Zaikai,Shen Ying,Li Xinhua,Xu Zhihong,Jiang Qing
Abstract
Abstract
Objectives
Graduated compression stocking (GCS) is one of the mechanical prophylaxes commonly used for deep vein thrombosis (DVT). The present study was designed to observe the effects of graduated compression stockings on the vein deformation and hemodynamics of lower limbs in patients awaiting total hip arthroplasty (THA).
Methods
The lower extremity veins of 22 patients awaiting THA were examined by ultrasound, when they rested in supine position with or without thigh-length GCS. The deformation parameters we measured included antero-posterior (AP) diameters, latero-medial (LM) diameters, and cross-sectional area (CSA) of great saphenous vein (GSV), posterior tibial vein (PTV), popliteal vein (PV), gastrocnemius vein (GV), and superficial femoral vein (SFV). We measured peak velocity and mean velocity of GSV, common femoral vein (CFV), junction of GSV and CFV to represent for hemodynamics of veins.
Results
Significant compression was observed in almost all measured veins with the use of thigh-length GCS, while it was unable to significantly compress GSV in latero-medial diameter. The mean latero-medial diameter reductions for GSV, PTV, GV, PV and SFV were 19.4, 30.2, 43.2, 29.7 and 20.4%, respectively. GCS significantly compressed antero-posterior diameter of GSV, PTV, GV, PV and SFV by 43.4, 33.3, 42.1, 37.5, and 27.8%, respectively. The mean reduction of cross-section area was 44.8% for GSV, 49.6% for PTV, 60.0% for GV, 57.4% for PV, and 36.2% for FV. No significant changes were observed in the mean blood velocity of GSV, CFV, and junction. GCS was able to significantly reduce peak velocity of CFV (17.6 ± 5.6 cm/s to 16.1 ± 6.0 cm/s) and junction (23.3 ± 9.5 cm/s to 21.3 ± 9.7 cm/s), while it did not change the peak velocity of GSV.
Conclusion
Thigh-length GCS is sufficient to compress lower extremity veins in patients awaiting THA in supine position with the greatest compression in GV, while it was unable to significantly increase blood velocity of common femoral vein or GSV. GCS may prevent DVT through more than simply increasing blood flow. Further studies are needed to determine the specific effects of GCS.
Funder
National Natural Science Foundation of China
Key Program of NSF
Major Project of NSF
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology