Prediction of specific structural damage to the knee joint using qualitative isokinetic analysis

Author:

Zheng Feisheng,Jia Rui,Ye Jinqun,Li Mengyuan,Zhang Yunping,Xu Guangqing,Zhang Lei

Abstract

Abstract Background An isokinetic moment curve (IMC) pattern-damaged structure prediction model may be of considerable value in assisting the diagnosis of knee injuries in clinical scenarios. This study aimed to explore the association between irregular IMC patterns and specific structural damages in the knee, including anterior cruciate ligament (ACL) rupture, meniscus (MS) injury, and patellofemoral joint (PFJ) lesions, and to develop an IMC pattern-damaged structure prediction model. Methods A total of 94 subjects were enrolled in this study and underwent isokinetic testing of the knee joint (5 consecutive flexion-extension movements within the range of motion of 90°-10°, 60°/s). Qualitative analysis of the IMCs for all subjects was completed by two blinded examiners. A multinomial logistic regression analysis was used to investigate whether a specific abnormal curve pattern was associated with specific knee structural injuries and to test the predictive effectiveness of IMC patterns for specific structural damage in the knee. Results The results of the multinomial logistic regression revealed a significant association between the irregular IMC patterns of the knee extensors and specific structural damages (“Valley” - ACL, PFJ, and ACL + MS, “Drop” - ACL, and ACL + MS, “Shaking” - ACL, MS, PFJ, and ACL + MS). The accuracy and Macro-averaged F1 score of the predicting model were 56.1% and 0.426, respectively. Conclusion The associations between irregular IMC patterns and specific knee structural injuries were identified. However, the accuracy and Macro-averaged F1 score of the established predictive model indicated its relatively low predictive efficacy. For the development of a more accurate predictive model, it may be essential to incorporate angle-specific and/or speed-specific analyses of qualitative and quantitative data in isokinetic testing. Furthermore, the utilization of artificial intelligence image recognition technology may prove beneficial for analyzing large datasets in the future.

Funder

the Medical Scientific Research Foundation of Guangdong Province

Project of Administration of Traditional Chinese Medicine of Guangdong Province of China

Start-up Funding of the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3