Author:
Li Xinhua,Liu Xiaoming,Wang Yiru,Cao Fuming,Chen Zhaoxiong,Hu Zhouyang,Yu Bin,Feng Hang,Ba Zhaoyu,Liu Tao,Li Haoxi,Jiang Bei,Huang Yufeng,Li Lijun,Wu Desheng
Abstract
Abstract
Background
The leptin receptor-deficient knockout (db/db) mouse is a well-established model for studying type II diabetes mellitus (T2DM). T2DM is an important risk factor of intervertebral disc degeneration (IVDD). Although the relationship between type I diabetes and IVDD has been reported by many studies, few studies have reported the effects of T2DM on IVDD in db/db mice model.
Methods
Mice were separated into 3 groups: wild-type (WT), db/db, and IGF-1 groups (leptin receptor-deficient mice were treated with insulin-like growth factor-1 (IGF-1). To observe the effects of T2DM and glucose-lowering treatment on IVDD, IGF-1 injection was used. The IVD phenotype was detected by H&E and safranin O fast green staining among db/db, WT and IGF-1 mice. The levels of blood glucose and weight in mice were also recorded. The changes in the mass of the trabecular bone in the fifth lumbar vertebra were documented by micro-computed tomography (micro-CT). Tunnel assays were used to detect cell apoptosis in each group.
Results
The weight of the mice were 27.68 ± 1.6 g in WT group, which was less than 57.56 ± 4.8 g in db/db group, and 52.17 ± 3.7 g in IGF-1 injected group (P < 0.05). The blood glucose levels were also significantly higher in the db/db mice group. T2DM caused by leptin receptor knockout showed an association with significantly decreased vertebral bone mass and increased IVDD when compared to WT mice. The db/db mice induced by leptin deletion showed a higher percentage of MMP3 expression as well as cell apoptosis in IVDD mice than WT mice (P < 0.05), while IGF-1 treatment reversed this situation (P < 0.05).
Conclusions
T2DM induced by leptin receptor knockout led to IVDD by increasing the levels of MMP3 and promoting cell apoptosis. IGF-1 treatment partially rescue the phenotype of IVDD induced by leptin receptor knockout.
Funder
Key Discipline Construction Project of Pudong Health Bureau of Shanghai
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献