Topical cutaneous application of carbon dioxide via a hydrogel for improved fracture repair: results of phase I clinical safety trial

Author:

Niikura TakahiroORCID,Iwakura Takashi,Omori Takashi,Lee Sang Yang,Sakai Yoshitada,Akisue Toshihiro,Oe Keisuke,Fukui Tomoaki,Matsushita Takehiko,Matsumoto Tomoyuki,Kuroda Ryosuke

Abstract

Abstract Background Clinicians have very limited options to improve fracture repair. Therefore, it is critical to develop a new clinically available therapeutic option to assist fracture repair biologically. We previously reported that the topical cutaneous application of carbon dioxide (CO2) via a CO2 absorption-enhancing hydrogel accelerates fracture repair in rats by increasing blood flow and angiogenesis and promoting endochondral ossification. The aim of this study was to assess the safety and efficacy of CO2 therapy in patients with fractures. Methods Patients with fractures of the femur and tibia were prospectively enrolled into this study with ethical approval and informed consent. The CO2 absorption-enhancing hydrogel was applied to the fractured lower limbs of patients, and then 100% CO2 was administered daily into a sealed space for 20 min over 4 weeks postoperatively. Safety was assessed based on vital signs, blood parameters, adverse events, and arterial and expired gas analyses. As the efficacy outcome, blood flow at the level of the fracture site and at a site 5 cm from the fracture in the affected limb was measured using a laser Doppler blood flow meter. Results Nineteen patients were subjected to complete analysis. No adverse events were observed. Arterial and expired gas analyses revealed no adverse systemic effects including hypercapnia. The mean ratio of blood flow 20 min after CO2 therapy compared with the pre-treatment level increased by approximately 2-fold in a time-dependent manner. Conclusions The findings of the present study revealed that CO2 therapy is safe to apply to human patients and that it can enhance blood flow in the fractured limbs. Trial registration This study has been registered in the UMIN Clinical Trials Registry (Registration number: UMIN000013641, Date of registration: July 1, 2014).

Funder

ZENKYOREN

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3