FK506 increases susceptibility to musculoskeletal infection in a rodent model

Author:

Shiels Stefanie M.,Muire Preeti J.,Wenke Joseph C.

Abstract

AbstractBackgroundDelayed fracture healing caused by soft tissue loss can be resolved by the administration of a Th1 immunosuppressant, such as FK506. Additionally, open fractures are at high risk for infection. We hypothesized that the inclusion of an immunosuppressant to a subject at risk for a musculoskeletal infection will increase the likelihood of infection.MethodsA rat model of musculoskeletal infection was used. Sprague Dawley rats received a stabilized femur defect and were inoculated with 104 CFUStaphylococcus aureusvia a collagen matrix. Six hours after inoculation, the wounds were debrided of collagen and devitalized tissue and irrigated with sterile saline. The animals were randomized into two groups: carrier control and FK506, which were administered daily for 14 days and were euthanized and the tissues harvested to measure local bioburden.ResultsThe dosing regimen of FK506 that restored bone healing increased the bioburden in the bone and on the fixation implant compared to the carrier control animals. As expected, the administration of FK506 decreased circulating white blood cells, lymphocytes, neutrophils, and monocytes. Additionally, the red blood cell count, hematocrit, and body weight were lower in those animals that received FK506 compared to carrier control.ConclusionsFK506 administration decreased the systemic immune cell counts and increased the bacterial bioburden within a model of musculoskeletal infection. Collectively, these outcomes could be attributed to the overall T cell suppression by FK506 and the altered antimicrobial activity of innate cells, thereby allowingS. aureusto thrive and subsequently leading to infection of severe, musculoskeletal injuries. These observations reveal the crucial continued investigation for the clinical use of FK506, and other immunosuppressant compounds, in trauma patients who are at increased risk of developing infections.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3