Author:
Gachon Bertrand,Fritel Xavier,Pierre Fabrice,Nordez Antoine
Abstract
Abstract
Background
Animal studies have reported an increase in pelvic floor muscle stiffness during pregnancy, which might be a protective process against perineal trauma at delivery. Our main objective is to describe the changes in the elastic properties of the pelvic floor muscles (levator ani, external anal sphincter) during human pregnancy using shear wave elastography (SWE) technology. Secondary objectives are as follows: i) to look for specific changes of the pelvic floor muscles compared to peripheral muscles; ii) to determine whether an association between the elastic properties of the levator ani and perineal clinical and B-mode ultrasound measures exists; and iii) to provide explorative data about an association between pelvic floor muscle characteristics and the risk of perineal tears.
Methods
Our prospective monocentric study will involve three visits (14–18, 24–28, and 34–38 weeks of pregnancy) and include nulliparous women older than 18 years, with a normal pregnancy and a body mass index (BMI) lower than 35 kg.m− 2. Each visit will consist of a clinical pelvic floor assessment (using the Pelvic Organ Prolapse Quantification system), an ultrasound perineal measure of the anteroposterior hiatal diameter and SWE assessment of the levator ani and the external anal sphincter muscles (at rest, during the Valsalva maneuver and during pelvic floor contraction), and SWE assessment of both the biceps brachii and the gastrocnemius medialis (at rest, extension and contraction). We will collect data about the mode of delivery and the occurrence of perineal tears. We will investigate changes in continuous variables collected using the Friedman test. We will look for an association between the elastic properties of the levator ani muscle and clinical / ultrasound measures using a Spearman test at each trimester. We will investigate the association between the elastic properties of the pelvic floor muscles and perineal tear occurrence using a multivariate analysis with logistic regression.
Discussion
This study will provide original in vivo human data about the biomechanical changes of pregnant women’s pelvic floor. The results may lead to an individualized risk assessment of perineal trauma at childbirth.
Trial registration
This study was registered on https://clinicaltrials.gov on July 26, 2018 (NCT03602196).
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference47 articles.
1. Fritel X, Gachon B, Desseauve D, et al. Anal incontinence and obstetrical anal sphincter injuries, epidemiology and prevention. Gynecol Obstet Fertil Senol. 2018;46:419–26.
2. Gachon B, Nordez A, Pierre F, et al. Tissue biomechanical behavior should be considered in the risk assessment of perineal trauma at childbirth. Arch Gynecol Obstet. 2019;300:1821–6.
3. Van Delft K, Sultan AH, Thakar R, et al. The relationship between postpartum levator ani muscle avulsion and signs and symptoms of pelvic floor dysfunction. BJOG. 2014;121:1164–71.
4. Van Delft K, Thakar R, Sultan AH, et al. Does the prevalence of levator ani muscle avulsion differ when assessed using tomographic ultrasound imaging at rest vs on maximum pelvic floor muscle contraction? Ultrasound Obstet Gynecol. 2015;46:99–103.
5. Ashton-Miller JA, DeLancey JO. Functional anatomy of the female pelvic floor. Ann N Y Acad Sci. 2007;1101:266–96.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献