Retrieval analysis of PEEK rods pedicle screw system: three cases analysis

Author:

Xu Xiaoduo,Wang Lei,Wang Jingming,Yu Xiuchun,Huang Weimin

Abstract

Abstract Purpose To analyze the characteristics of PEEK rods retrieved in vivo, specifically their wear and deformation, biodegradability, histocompatibility, and mechanical properties. Method Six PEEK rods were retrieved from revision surgeries along with periprosthetic tissue. The retrieved PEEK rods were evaluated for surface damage and internal changes using Micro-CT, while light and electron microscopy were utilized to determine any histological changes in periprosthetic tissues. Patient history was gathered from medical records. Two intact and retrieved PEEK rods were used for fatigue testing analysis by sinusoidal load to the spinal construct. Results All implants showed evidence of plastic deformation around the screw-rod interface, while the inner structure of PEEK rods appeared unchanged with no visible voids or cracks. Examining images captured through light and electron microscopy indicated that phagocytosis of macrophages around PEEK rods was less severe in comparison to the screw-rod interface. The results of an energy spectrum analysis suggested that the distribution of tissue elements around PEEK rods did not differ significantly from normal tissue. During fatigue testing, it was found that the retrieved PEEK rods cracked after 1.36 million tests, whereas the intact PEEK rods completed 5 million fatigue tests without any failure. Conclusion PEEK rods demonstrate satisfactory biocompatibility, corrosion resistance, chemical stability, and mechanical properties. Nevertheless, it is observed that the indentation at the junction between the nut and the rod exhibits relatively weak strength, making it susceptible to breakage. As a precautionary measure, it is recommended to secure the nut with a counter wrench, applying the preset torque to prevent overtightening.

Funder

Jinan Clinical Medical Science and Technology Innovation Plan

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3