The significance of reduction of valgus-intercalated femoral neck fracture with valgus angle > 15°and the selection of internal fixation by finite element analysis

Author:

Yusufu Alimujiang,Yusupu Tusongjiang,Haibier Abuduwupuer,Abulaiti Abudula,Ran Jian

Abstract

Abstract Background Currently, consensus is lacking on the necessity of internal fixation after reducing valgus-intercalated femoral neck fractures with abduction > 15°. This study employs finite element analysis to compare the biomechanical differences between the femoral neck dynamic cross nail system (FNS) and inverted cannulated screw (ICS), aiming to provide a foundation for clinical procedures. Methods Human femur CT scan data were processed using MimICS21.0 and Geomagic 2021 software, imported into Solidworks2021 to create fracture models, based on Garden I abduction and Valgus-intercalated femoral neck fractures. The internal fixation model was divided into two groups: A—Anatomic reduction group; B—Valgus-intercalated femoral neck fracture group. ANSYS software facilitated meshing, material assignment, and data calculation for stress and displacement comparisons when ICS and FNS were applied in reduction or non-reduction scenarios. Results Without internal fixation, peak femur stress in both groups was 142.93 MPa and 183.62 MPa. Post FNS fixation, peak stress was 254.11 MPa and 424.81 MPa; peak stresses for the two FNS models were 141.26 MPa and 248.33 MPa. Maximum displacements for the two FNS groups were 1.91 mm and 1.26 mm, with peak fracture-end stress at 50.751 MPa and 124.47 MPa. After ICS fixation, femur peak stress was 204.76 MPa and 274.08 MPa; maximum displacements were 1.53 mm and 1.15 mm. ICS peak stress was 123.88 MPa and 174.61 MPa; maximum displacements were 1.17 mm and 1.09 mm, with peak fracture-end stress at 61.732 MPa and 104.02 MPa, respectively. Conclusions Our finite element study indicates superior mechanical stability with internal fixation after reducing valgus-intercalated femoral neck fractures (> 15°) compared to in situ fixation. Additionally, ICS biomechanical properties are more suitable for this fracture type than FNS.

Funder

The Graduate Innovation Project of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3