Author:
Yusufu Alimujiang,Yusupu Tusongjiang,Haibier Abuduwupuer,Abulaiti Abudula,Ran Jian
Abstract
Abstract
Background
Currently, consensus is lacking on the necessity of internal fixation after reducing valgus-intercalated femoral neck fractures with abduction > 15°. This study employs finite element analysis to compare the biomechanical differences between the femoral neck dynamic cross nail system (FNS) and inverted cannulated screw (ICS), aiming to provide a foundation for clinical procedures.
Methods
Human femur CT scan data were processed using MimICS21.0 and Geomagic 2021 software, imported into Solidworks2021 to create fracture models, based on Garden I abduction and Valgus-intercalated femoral neck fractures. The internal fixation model was divided into two groups: A—Anatomic reduction group; B—Valgus-intercalated femoral neck fracture group. ANSYS software facilitated meshing, material assignment, and data calculation for stress and displacement comparisons when ICS and FNS were applied in reduction or non-reduction scenarios.
Results
Without internal fixation, peak femur stress in both groups was 142.93 MPa and 183.62 MPa. Post FNS fixation, peak stress was 254.11 MPa and 424.81 MPa; peak stresses for the two FNS models were 141.26 MPa and 248.33 MPa. Maximum displacements for the two FNS groups were 1.91 mm and 1.26 mm, with peak fracture-end stress at 50.751 MPa and 124.47 MPa. After ICS fixation, femur peak stress was 204.76 MPa and 274.08 MPa; maximum displacements were 1.53 mm and 1.15 mm. ICS peak stress was 123.88 MPa and 174.61 MPa; maximum displacements were 1.17 mm and 1.09 mm, with peak fracture-end stress at 61.732 MPa and 104.02 MPa, respectively.
Conclusions
Our finite element study indicates superior mechanical stability with internal fixation after reducing valgus-intercalated femoral neck fractures (> 15°) compared to in situ fixation. Additionally, ICS biomechanical properties are more suitable for this fracture type than FNS.
Funder
The Graduate Innovation Project of Xinjiang Uygur Autonomous Region
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献