Accuracy of radiographic measurement techniques for the Taylor spatial frame mounting parameters

Author:

Gessmann Jan,Frieler SvenORCID,Königshausen Matthias,Schildhauer Thomas A.,Hanusrichter Yannik,Seybold Dominik,Baecker Hinnerk

Abstract

Abstract Aim The correction accuracy of the Taylor Spatial Frame (TSF) fixator depends considerably on the precise determination of the mounting parameters (MP). Incorrect parameters result in secondary deformities that require subsequent corrections. Different techniques have been described to improve the precision of MP measurement, although exact calculation is reportedly impossible radiologically. The aim of this study was to investigate the accuracy of intraoperative and postoperative radiographic measurement methods compared to direct MP measurement from TSF bone mounting. Methods A tibial Sawbone® model was established with different origins and reference ring positions. First, reference MPs for each origin were measured directly on the frame and bone using a calibrated, digital vernier calliper. In total 150 MPs measured with three different radiographic measurement techniques were compared to the reference MPs: digital radiographic measurements were performed using soft-copy PACS images without (method A) and with (method B) calibration and calibrated image intensifier images (method C). Results MPs measured from a non-calibrated X-ray image (method A) showed the highest variance compared to the reference MPs. A greater distance between the origin and the reference ring corresponded to less accurate MP measurements with method A. However, the MPs measured from calibrated X-ray images (method B) and calibrated image intensifier images (method C) were intercomparable (p = 0.226) and showed only minor differences compared to the reference values but significant differences to method A (p < 0,001). Conclusion The results demonstrate that MPs can be accurately measured with radiographic techniques when using calibration markers and a software calibration tool, thus minimizing the source of error and improving the quality of correction.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3