Biomechanical changes of degenerated adjacent segment and intact lumbar spine after lumbosacral topping-off surgery: a three-dimensional finite element analysis

Author:

Cao Liangliang,Liu Yumei,Mei WeiORCID,Xu JianguangORCID,Zhan Shi

Abstract

Abstract Background Previous studies have revealed positive effect of Topping-off technique on upper adjacent segment after fusion surgery, while for the cases with fusion surgery on L5-S1 segment, owning maximal range of motion, and preexisting degenerated upper adjacent disc, it is necessary to clarify the superiority of Topping-ff technique and the effect exerted on the lumbar spine. Methods A young healthy male volunteer was selected for thin-slice CT scanning. Then the image information was imported into the computer to establish the whole lumbar spine model as the health model. The medium degeneration model of intervertebral disc was established by changing the material properties of L4-S1 disc on the basis of the health model, and the fusion model and Topping-off model were respectively established on the basis of the degenerated model. The variation trend of ROM of L2-L5 and the stress changes of L4-L5 intervertebral disc, nucleus pulposus and facet joints were calculated respectively. Results The L4-L5 ROM of fusion model increased significantly but the ROM of L2-L3 and L3-L4 segments did not change significantly. Compared with the degenerated model, L4-L5 activity of the Topping-off model decreased, and ROM of the L2-L3 and L3-L4 increased to some extent in the flexion and extension positions. The stress on the disc, nucleus pulposus and facet joint of the fusion model L4-L5 increased in four positions of flexion, extension, rotation and bending compared with the degenerated model, while the fiber stress on the Topping-off model decreased significantly in all four positions. Conclusion Topping-off technology can decrease the stress and ROM of the adjacent upper degenerated segment, and increase the ROM of other upper segments, thereby protecting the degenerated upper adjacent segments and compensating the lumbar spine mobility.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3