Author:
Oku Norihiro,Demura Satoru,Tawara Daisuke,Kato Satoshi,Shinmura Kazuya,Yokogawa Noriaki,Yonezawa Noritaka,Shimizu Takaki,Kitagawa Ryo,Handa Makoto,Ryohei Annen,Tsuchiya Hiroyuki
Abstract
Abstract
Background
This study represents the first finite element (FE) analysis of long-instrumented spinal fusion from the thoracic vertebrae to the pelvis in the context of adult spinal deformity (ASD) with osteoporosis. We aimed to evaluate the von Mises stress in long spinal instrumentation for models that differ in terms of spinal balance, fusion length, and implant type.
Methods
In this three-dimensional FE analysis, FE models were developed based on computed tomography images from a patient with osteoporosis. The von Mises stress was compared for three different sagittal vertical axes (SVAs) (0, 50, and 100 mm), two different fusion lengths (from the pelvis to the second [T2-S2AI] or 10th thoracic vertebra [T10-S2AI]), and two different types of implants (pedicle screw or transverse hook) in the upper instrumented vertebra (UIV). We created 12 models based on combinations of these conditions.
Results
The overall von Mises stress was 3.1 times higher on the vertebrae and 3.9 times higher on implants for the 50-mm SVA models than that for the 0-mm SVA models. Similarly, the values were 5.0 times higher on the vertebrae and 6.9 times higher on implants for the 100-mm SVA models than that for the 0-mm SVA models. Higher SVA was associated with greater stress below the fourth lumbar vertebrae and implants. In the T2-S2AI models, the peaks of vertebral stress were observed at the UIV, at the apex of kyphosis, and below the lower lumbar spine. In the T10-S2AI models, the peaks of stress were observed at the UIV and below the lower lumbar region. The von Mises stress in the UIV was also higher for the screw models than for the hook models.
Conclusion
Higher SVA is associated with greater von Mises stress on the vertebrae and implants. The stress on the UIV is greater for the T10-S2AI models than for the T2-S2AI models. Using transverse hooks instead of screws at the UIV may reduce stress in patients with osteoporosis.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Rheumatology
Reference12 articles.
1. Ailon T, Smith JS, Shaffrey CI, Lenke LG, Brodke D, Harrop JS, et al. Degenerative spinal deformity. Neurosurgery. 2015;77(Supplement 4):S75-91.
2. Cahill PJ, Wang W, Asghar J, Booker R, Betz RB, Ramcey C, et al. The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine after scoliosis surgery: a finite element analysis. Spine (Phila Pa 1976). 2012;37:E687-95.
3. Keyak JH, Meagher JM, Skinner HB, Mote CD Jr. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng. 1990;12:389–97.
4. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.
5. Nakashima D, Kanchiku T, Nishida N, Ito S, Ohgi J, Suzuki H, et al. Finite element analysis of compression fractures at the thoracolumbar junction using models constructed from medical images. Exp Ther Med. 2018;15:3225–30.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献