EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment

Author:

Dutta DebasmitaORCID,Al Hoque Ashique,Paul Brahamacharry,Park Jun Hyoung,Chowdhury Chinmay,Quadir Mohiuddin,Banerjee Soumyabrata,Choudhury Arghadip,Laha Soumik,Sepay Nayim,Boro Priyanka,Kaipparettu Benny AbrahamORCID,Mukherjee BiswajitORCID

Abstract

Abstract Background Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. Methods After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. Results We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. Conclusions Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted. Graphical abstract

Funder

Department of Biotechnology, Govt. of India

Publisher

Springer Science and Business Media LLC

Reference82 articles.

1. Betulinic Acid Triggers CD95 (APO-1/Fas)- and p53-independent Apoptosis via Activation of Caspases in Neuroectodermal Tumors1|Cancer Research|American Association for Cancer Research. [cited 2022 Sep 18]. Available from: https://aacrjournals.org/cancerres/article/57/21/4956/503713/Betulinic-Acid-Triggers-CD95-APO-1-Fas-and-p53.

2. Fulda S, Scaffidi G, Susin SA, Krammer PH, Kroemer G, Peter ME, et al. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. J Biol Chem. 1998;273:33942–8.

3. Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. J Pharmacol Exp Ther. 1999;289:1306.

4. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, et al. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002;175:17–25.

5. Ji ZN, Ye WC, Liu GG, Hsiao WLW. 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells. Life Sci. 2002;72:1–9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3