HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression

Author:

Liu Guo-Zhen,Xu Xu-Wen,Tao Shu-Hui,Gao Ming-Jian,Hou Zhou-HuaORCID

Abstract

Abstract Background Acute liver failure (ALF) is a syndrome of severe hepatocyte injury with high rate of mortality. Hepatitis B virus (HBV) infection is the major cause of ALF worldwide, however, the underlying mechanism by which HBV infection leads to ALF has not been fully disclosed. Methods D-GalN-induced hepatocyte injury model and LPS/D-GalN-induced ALF mice model were used to investigate the effects of HBV X protein (HBx) in vitro and in vivo, respectively. Cell viability and the levels of Glutathione (GSH), malondialdehyde (MDA) and iron were measured using commercial kits. The expression of ferroptosis-related molecules were detected by qRT-PCR and western blotting. Epigenetic modification and protein interaction were detected by chromatin immunoprecipitation (ChIP) assay and co-immunoprecipitation (co-IP), respectively. Mouse liver function was assessed by measuring aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The histological changes in liver tissues were monitored by hematoxylin and eosin (H&E) staining, and SLC7A11 immunoreactivity was assessed by immunohistochemistry (IHC) analysis. Results D-GalN triggered ferroptosis in primary hepatocytes. HBx potentiated D-GalN-induced hepatotoxicity and ferroptosis in vitro, and it suppressed SLC7A11 expression through H3K27me3 modification by EZH2. In addition, EZH2 inhibition or SLC7A11 overexpression attenuated the effects of HBx on D-GalN-induced ferroptosis in primary hepatocytes. The ferroptosis inhibitor ferrostatin-1 (Fer-1) protected against ALF and ferroptosis in vivo. By contrast, HBx exacerbates LPS/D-GalN-induced ALF and ferroptosis in HBx transgenic (HBx-Tg) mice. Conclusion HBx facilitates ferroptosis in ALF via EZH2/H3K27me3-mediated SLC7A11 suppression.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3