PTEN regulates invasiveness in pancreatic neuroendocrine tumors through DUSP19-mediated VEGFR3 dephosphorylation

Author:

Chang Tsung-Ming,Chu Pei-Yi,Lin Hui-You,Huang Kuo-Wei,Hung Wen-Chun,Shan Yan-Shen,Chen Li-Tzong,Tsai Hui-JenORCID

Abstract

Abstract Background Phosphatase and tensin homolog (PTEN) is a tumor suppressor. Low PTEN expression has been observed in pancreatic neuroendocrine tumors (pNETs) and is associated with increased liver metastasis and poor survival. Vascular endothelial growth factor receptor 3 (VEGFR3) is a receptor tyrosine kinase and is usually activated by binding with vascular endothelial growth factor C (VEGFC). VEGFR3 has been demonstrated with lymphangiogenesis and cancer invasiveness. PTEN is also a phosphatase to dephosphorylate both lipid and protein substrates and VEGFR3 is hypothesized to be a substrate of PTEN. Dual-specificity phosphatase 19 (DUSP19) is an atypical DUSP and can interact with VEGFR3. In this study, we investigated the function of PTEN on regulation of pNET invasiveness and its association with VEGFR3 and DUSP19. Methods PTEN was knocked down or overexpressed in pNET cells to evaluate its effect on invasiveness and its association with VEGFR3 phosphorylation. In vitro phosphatase assay was performed to identify the regulatory molecule on the regulation of VEGFR3 phosphorylation. In addition, immunoprecipitation, and immunofluorescence staining were performed to evaluate the molecule with direct interaction on VEGFR3 phosphorylation. The animal study was performed to validate the results of the in vitro study. Results The invasion and migration capabilities of pNETs were enhanced by PTEN knockdown accompanied with increased VEGFR3 phosphorylation, ERK phosphorylation, and increased expression of epithelial–mesenchymal transition molecules in the cells. The enhanced invasion and migration abilities of pNET cells with PTEN knockdown were suppressed by addition of the VEGFR3 inhibitor MAZ51, but not by the VEGFR3-Fc chimeric protein to neutralize VEGFC. VEGFR3 phosphorylation is responsible for pNET cell invasiveness and is VEGFC-independent. However, an in vitro phosphatase assay failed to show VEGFR3 as a substrate of PTEN. In contrast, DUSP19 was transcriptionally upregulated by PTEN and was shown to dephosphorylate VEGFR3 via direct interaction with VEGFR3 by an in vitro phosphatase assay, immunoprecipitation, and immunofluorescence staining. Increased tumor invasion into peripheral tissues was validated in xenograft mouse model. Tumor invasion was suppressed by treatment with VEGFR3 or MEK inhibitors. Conclusions PTEN regulates pNET invasiveness via DUSP19-mediated VEGFR3 dephosphorylation. VEGFR3 and DUSP19 are potential therapeutic targets for pNET treatment.

Funder

National Health Research Institutes

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3