TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis

Author:

Zhang Panpan,Li Xiaomin,He Qiuping,Zhang Lulu,Song Keqing,Yang Xiaojing,He Qingmei,Wang Yaqin,Hong Xiaohong,Ma Jun,Liu Na

Abstract

Abstract Background The main strategy against nasopharyngeal carcinoma (NPC) is radiotherapy. However, radioresistance mediated recurrence is a leading clinical bottleneck in NPC. Revealing the mechanism of NPC radioresistance will help improve the therapeutic effect. Methods In this study, the role of TRIM21 (tripartite motif–containing 21) in NPC receiving ionizing radiation was firstly examined both in vivo and in vitro. Mass spectrometry analysis was performed to identify the downstream targets of TRIM21. NPC cells with TRIM21 or SERPINB5 (serpin family B member 5) overexpression or knockout were used to determine the epistatic relationship among SERPINB5, GMPS (guanine monophosphate synthase) and TRIM21. Flow cytometry, co-immunoprecipitation, western blot and immunofluorescence were employed to strengthen the results. Finally, immunohistochemistry using 4 radiosensitive and 8 radioresistent NPC patient samples was perform to examine the association between SERPINB5 or GMPS expression and patient radio-sensitivity. Results As an E3 ligase, TRIM21 was highly expressed in NPC. After ionizing radiation, TRIM21 repressed TP53 expression by mediating GMPS ubiquitination and degradation. Overexpression of TRIM21 protected NPC cells from radiation mediated cell apoptosis in vitro and in vivo. Further analysis revealed that TRIM21 mediated GMPS repression was dependent on SERPINB5, and SERPINB5 served as an adaptor which prevented GMPS from entering into the nucleus and introduced TRIM21 for GMPS ubiquitination. Moreover, the in vitro and in vivo results validated the finding that SERPINB5 promoted NPC cell radioresistance, and the radioresistant patients had higher SERPINB5 expression. Conclusions Overall, our data showed that TRIM21–SERPINB5-mediated GMPS degradation facilitated TP53 repression, which promoted the radioresistance of NPC cells. This novel working model related to TP53 suppression provided new insight into NPC radioresistence clinically.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3