Author:
Zhang Panpan,Li Xiaomin,He Qiuping,Zhang Lulu,Song Keqing,Yang Xiaojing,He Qingmei,Wang Yaqin,Hong Xiaohong,Ma Jun,Liu Na
Abstract
Abstract
Background
The main strategy against nasopharyngeal carcinoma (NPC) is radiotherapy. However, radioresistance mediated recurrence is a leading clinical bottleneck in NPC. Revealing the mechanism of NPC radioresistance will help improve the therapeutic effect.
Methods
In this study, the role of TRIM21 (tripartite motif–containing 21) in NPC receiving ionizing radiation was firstly examined both in vivo and in vitro. Mass spectrometry analysis was performed to identify the downstream targets of TRIM21. NPC cells with TRIM21 or SERPINB5 (serpin family B member 5) overexpression or knockout were used to determine the epistatic relationship among SERPINB5, GMPS (guanine monophosphate synthase) and TRIM21. Flow cytometry, co-immunoprecipitation, western blot and immunofluorescence were employed to strengthen the results. Finally, immunohistochemistry using 4 radiosensitive and 8 radioresistent NPC patient samples was perform to examine the association between SERPINB5 or GMPS expression and patient radio-sensitivity.
Results
As an E3 ligase, TRIM21 was highly expressed in NPC. After ionizing radiation, TRIM21 repressed TP53 expression by mediating GMPS ubiquitination and degradation. Overexpression of TRIM21 protected NPC cells from radiation mediated cell apoptosis in vitro and in vivo. Further analysis revealed that TRIM21 mediated GMPS repression was dependent on SERPINB5, and SERPINB5 served as an adaptor which prevented GMPS from entering into the nucleus and introduced TRIM21 for GMPS ubiquitination. Moreover, the in vitro and in vivo results validated the finding that SERPINB5 promoted NPC cell radioresistance, and the radioresistant patients had higher SERPINB5 expression.
Conclusions
Overall, our data showed that TRIM21–SERPINB5-mediated GMPS degradation facilitated TP53 repression, which promoted the radioresistance of NPC cells. This novel working model related to TP53 suppression provided new insight into NPC radioresistence clinically.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献