Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145

Author:

Wade Henry,Pan Kaichao,Duan Qihua,Kaluzny Szczepan,Pandey Ekta,Fatumoju Linda,Saraswathi Viswanathan,Wu Rongxue,Harris Edward N.,Su Qiaozhu

Abstract

Abstract Background The intestinal epithelial barrier is the interface for interaction between gut microbiota and host metabolic systems. Akkermansia muciniphila (A. muciniphila) is a key player in the colonic microbiota that resides in the mucus layer, whose abundance is selectively decreased in the faecal microbiota of inflammatory bowel disease (IBD) patients. This study aims to investigate the regulatory mechanism among A. muciniphila, a transcription factor cAMP-responsive element-binding protein H (CREBH), and microRNA-143/145 (miR-143/145) in intestinal inflammatory stress, gut barrier integrity and epithelial regeneration. Methods A novel mouse model with increased colonization of A muciniphila in the intestine of CREBH knockout mice, an epithelial wound healing assay and several molecular biological techniques were applied in this study. Results were analysed using a homoscedastic 2-tailed t-test. Results Increased colonization of A. muciniphila in mouse gut enhanced expression of intestinal CREBH, which was associated with the mitigation of intestinal endoplasmic reticulum (ER) stress, gut barrier leakage and blood endotoxemia induced by dextran sulfate sodium (DSS). Genetic depletion of CREBH (CREBH-KO) significantly inhibited the expression of tight junction proteins that are associated with gut barrier integrity, including Claudin5 and Claudin8, but upregulated Claudin2, a tight junction protein that enhances gut permeability, resulting in intestinal hyperpermeability and inflammation. Upregulation of CREBH by A. muciniphila further coupled with miR-143/145 promoted intestinal epithelial cell (IEC) regeneration and wound repair via insulin-like growth factor (IGF) and IGFBP5 signalling. Moreover, the gene expressing an outer membrane protein of A. muciniphila, Amuc_1100, was cloned into a mammalian cell-expression vector and successfully expressed in porcine and human IECs. Expression of Amuc_1100 in IECs could recapitulate the health beneficial effect of A. muciniphila on the gut by activating CREBH, inhibiting ER stress and enhancing the expression of genes involved in gut barrier integrity and IEC’s regeneration. Conclusions This study uncovers a novel mechanism that links A. muciniphila and its membrane protein with host CREBH, IGF signalling and miRNAs in mitigating intestinal inflammatory stress–gut barrier permeability and promoting intestinal wound healing. This novel finding may lend support to the development of therapeutic approaches for IBD by manipulating the interaction between host genes, gut bacteria and its bioactive components.

Funder

NIH

Faculty Initiative Fund at Queen’s University Belfast

British Heart Foundation

Northern Ireland Chest, Heart and Stroke Association

Nebraska Research Initiative grant

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3