Abstract
Abstract
Background
Dysregulated long noncoding RNA (lncRNA) expression with increased apoptosis has been demonstrated in systemic lupus erythematosus (SLE) patients with alveolar hemorrhage (AH). SNHG16, a lncRNA, can enhance pulmonary inflammation by sponging microRNAs, and upregulate toll-like receptor 4 (TLR4) expression via stabilizing its mRNAs. TRAF6, a TLR4 downstream signal transducer, can induce autophagy and NETosis formation. In this study, we investigated whether SNHG16 could regulate TLR4-mediated autophagy and NETosis formation in SLE-associated AH.
Methods
Expression of SNHG16, TLR4 and TRAF6 and cell death processes were examined in lung tissues and peripheral blood (PB) leukocytes from AH patients associated with SLE and other autoimmune diseases, and in the lungs and spleen from a pristane-induced C57BL/6 mouse AH model. SNHG16-overexpressed or -silenced alveolar and myelocytic cells were stimulated with lipopolysaccharide (LPS), a TLR4 agonist, for analyzing autophagy and NETosis, respectively. Pristane-injected mice received the intra-pulmonary delivery of lentivirus (LV)-SNHG16 for overexpression and prophylactic/therapeutic infusion of short hairpin RNA (shRNA) targeting SNHG16 to evaluate the effects on AH. Renal SNHG16 expression was also examined in lupus nephritis (LN) patients and a pristane-induced BALB/c mouse LN model.
Results
Up-regulated SNHG16, TLR4 and TRAF6 expression with increased autophagy and NETosis was demonstrated in the SLE-AH lungs. In such patients, up-regulated SNHG16, TLR4 and TRAF6 expression was found in PB mononuclear cells with increased autophagy and in PB neutrophils with increased NETosis. There were up-regulated TLR4 expression and increased LPS-induced autophagy and NETosis in SNHG16-overexpressed cells, while down-regulated TLR4 expression and decreased LPS-induced autophagy and NETosis in SNHG16-silenced cells. Pristane-injected lung tissues had up-regulated SNHG16, TLR4/TRAF6 levels and increased in situ autophagy and NETosis formation. Intra-pulmonary LV-SNHG16 delivery enhanced AH through up-regulating TLR4/TRAF6 expression with increased cell death processes, while intra-pulmonary prophylactic and early therapeutic sh-SNHG16 delivery suppressed AH by down-regulating TLR4/TRAF6 expression with reduced such processes. In addition, there was decreased renal SNHG16 expression in LN patients and mice.
Conclusions
Our results demonstrate that lncRNA SNHG16 regulates TLR4-mediated autophagy and NETosis formation in the human and mouse AH lungs, and provide a therapeutic potential of intra-pulmonary delivery of shRNA targeting SNHG16 in this SLE-related lethal manifestation.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Biochemistry (medical),Cell Biology,Clinical Biochemistry,Molecular Biology,General Medicine,Endocrinology, Diabetes and Metabolism
Reference68 articles.
1. Tsokos GC, Lo MS, Costa Reis P, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12:716–30.
2. Liu MF, Wang CR, Fung LL. Decreased CD4-positive CD25-positive T cells in peripheral blood of patients with systemic lupus erythematosus. Scand J Immunol. 2004;59:198–202.
3. Mistry P, Kaplan MJ. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin Immunol. 2017;185:59–73.
4. Yu F, Haas M, Glassock R, Zhao MH. Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol. 2017;13:483–95.
5. Wang CR, Lin WC, Liu MF. Pulmonary capillaritis in systemic lupus erythematosus. In: Brown RM, editor. Vasculitis from diagnosis to treatment. New York, USA: NOVA Publishers; 2021. p. 221–44.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献