Biocontrol of Lysobacter enzymogenes CQ18 against the tobacco powdery mildew fugus, Erysiphe cichoracearum

Author:

Yang Hongjun,Peng Liyuan,Li Zhimo,Huang Chunyang,Huang Jianguo

Abstract

Abstract Background Powdery mildew is a common leaf disease of crops worldwide. A large quantity of chemical fungicides is used to control this disease in horticulture and agriculture, producing serious safety and environmental problems. To suppress this disease in safe and environment-friendly ways, the biocontrol of a self-isolated new strain of Lysobacter enzymogenes (CQ18) was studied against flue-cured tobacco powdery mildews. Results L. enzymogenes CQ18 produced chitinase, protease, β-1,3-glucanase, phosphatase, and siderophore, which may enable this biocontrol bacterium to degrade pathogen cell membranes and walls and deprive pathogens of iron. HPLC/MS analysis identified 14 antifungal metabolites present in L. enzymogenes CQ18 fermentation liquid (LEFL), which were grouped into organic acids, azoles, and pyrimidines. The variable targets in or on pathogen cells and combinative effects of these multiple metabolites may potently suppress the powdery mildew and be less likely to make Erysiphe cichoracearum develop resistance. LEFL was rich in L-pyroglutamate. Both LEFL and L-pyroglutamate inhibited the germination of E. cichoracearum conidia in vitro and reduced the powdery mildew index in the greenhouse and field. L-Pyroglutamate at a concentration of 0.50% achieved the same control efficacy as the chemical fungicide triadimefon (91–94%). Conclusions L. enzymogenes CQ18 and the metabolite L-pyroglutamate effectively controlled flue-cured tobacco powdery mildew. L. enzymogenes CQ18 grows rapidly and is resilient to adversity. L-Pyroglutamate has no toxicity to humans and is easy to synthesize at a low cost. Both show potential use in controlling plant powdery mildews. Graphical Abstract

Funder

Guizhou Provincial Tobacco Company Zunyi Branch

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3