Antioxidant cellulose nanofibers/lignin-based aerogels: a potential material for biomedical applications

Author:

Sanchez Laura M.,Hopkins Abigail K.,Espinosa Eduardo,Larrañeta Eneko,Malinova Dessislava,McShane Adam Nathan,Domínguez-Robles Juan,Rodríguez Alejandro

Abstract

Abstract Background Lignin is a naturally occurring and aromatic biopolymer with well-known antimicrobial and antioxidant properties. Thus, in this work, the use of cellulose nanofibers (CNF) and lignin to produce ultra-light aerogels for biomedical applications was studied. Aerogels containing varying amounts of lignin (0–30 wt%) and different concentrations of the crosslinking agent Fe3+ (25–100 mM) were developed. Results The different bioaerogels were fully characterized and their physical, mechanical and bioactive properties analyzed. It was observed that the bioaerogels soluble fraction tends to decrease as the lignin content increases for the different Fe3+ concentrations, due to lignin–CNF interactions through hydrogen bonds. The bioaerogels containing lignin showed remarkable radical scavenging activity as the DPPH concentration decreased with time. This confirms the benefits of including lignin in bioaerogels to impart antioxidant properties. To study the suitability of the produced bioaerogels for controlled drug release, the release of tetracycline (TC) was studied. All of the bioaerogels released TC in a sustained manner for 6 h and presented similar profiles. However, the bioaerogels containing higher concentrations of crosslinker showed a higher release of TC. The TC loading conferred clear antimicrobial activity against S. aureus as expected, unlike the insignificant antimicrobial activity of the bioaerogels without TC. The biocompatibility of the samples was demonstrated for all materials produced (with and without TC loading) by the Kruskal–Wallis test with multiple comparisons. After observation of cell morphology, no significant differences were evident suggesting that the CNF–lignin bioaerogels present optimal biocompatibility for use in the biomedical and pharmaceutical industry. Conclusions The CNF–lignin bioaerogels presented in this work highlights their promising application as biomedical applications, such as wound dressings due to their biocompatibility, antimicrobial and antioxidant properties, as well as their swelling and solubility properties. Graphical Abstract

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Society for Applied Microbiology

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3