Shared phytochemicals predict efficacy of essential oils against western flower thrips (Frankliniella occidentalis) in the greenhouse

Author:

Durr Tiffany D.,Stratton Chase A.,Dosoky Noura S.,Satyal Prabodh,Murrell Ebony G.

Abstract

Abstract Western flower thrips (Frankliniella occidentalis; Thysanoptera: Thripidae), or WFT, are a global pest of commercial crops, particularly those grown in greenhouses. Current management recommendations often involve judicious use of pesticides to which WFT have evolved multiple resistance phenotypes. Essential oils (EOs) have shown promise as a less toxic alternative for WFT greenhouse management. However, challenges remain in predicting which EOs are most likely to be insecticidal to WFT and ensuring that the efficacy of EOs under bioassay conditions reflect performance in whole-plant application scenarios. To address these challenges, 9 EOs were tested for contact toxicity against WFT in small container assays, then gas chromatography–mass spectroscopy (GC–MS) profiles of each EO were used to quantify concentrations of 22 chemicals shared by at least 5 or more of the plant species. Of these, 13 compounds were positively correlated with thrips mortality. Effective compounds were a mixture of sesquiterpenes, cyclic monoterpenes, and noncyclic monoterpenes. Interestingly, no bicyclic monoterpenes shared among the essential oils tested correlated with thrips mortality. Whole-plant assays of the four best EOs from the container assay showed significant reduction in the number of thrips per plant, although mortality in EO treatments in the whole plant assay was lower than in the container assay. In addition, all four EOs were as efficacious as the conventional insecticide flonicamid. Identifying other EOs with high concentrations of the efficacious compounds that were identified in this study and using container assays to screen these oils for WFT thrip mortality and phytotoxicity could help integrated pest management (IPM) practitioners and greenhouse staff to more rapidly accumulate a suite of EOs as low toxicity alternatives for management of WFT in greenhouse settings. Graphical Abstract

Funder

Land Institute

National Institute of Food and Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3