Pilot-scale continuous biogenic silica extraction from rice husk by one-pot alkali hydrothermal treatment and ball milling

Author:

Park Ji Yeon,Gu Yang Mo,Chun Jinyoung,Sang Byoung-In,Lee Jin Hyung

Abstract

Abstract Background Rice husk is the most silicon-rich renewable biomass and can be used as a raw material for producing silicon-based materials. With the increasing interest in utilizing rice husk as a renewable resource, the development of a robust silica extraction method is required. In this study, a one-pot alkali hydrothermal and ball-milling continuous silica extraction method was developed at the pilot scale. Results Three residence times (50, 100, and 150 min) were selected to compare the performance of the continuous extraction process depending on the residence time. The silica production was 4.09, 2.67, and 2.22 kg day−1 while the silica extraction yield was 52.8, 69.1, and 86.0% at resident times of 50, 100, and 150 min, respectively. The energy consumption for producing 1 kg of silica from rice husk was 51.6, 47.7, and 47.4 MJ kg−1 at resident times of 50, 100, and 150 min, respectively. The one-pot continuous silica extraction process was performed for 150 h to verify the stability of the process. During long-term operation, the process exhibited a constant solid content and stable silica extraction yield. The silicate solution obtained by the one-pot continuous process was successfully used to synthesize size-controlled spherical silica particles, which had a purity of 99.1 wt% and amorphous structure. Conclusions Overall, this study presents a novel continuous silica extraction method for the efficient recovery of silica from rice husk-based biorefineries. Graphical abstract

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3