Author:
Savy Davide,Cozzolino Vincenza,Vinci Giovanni,Verrillo Mariavittoria,Aliberti Antonietta,Maggio Albino,Barone Amalia,Piccolo Alessandro
Abstract
Abstract
Background
Salinity is one of the major threats for crop growth and yield and its rate of expansion is expected to increase. We conducted a pot experiment to evaluate and compare the effect of a green compost addition and mineral fertilisation, on growth, nutrition and metabolites of tomato plants, exposed to increasing doses of NaCl.
Results
Although the development of stressed plants was lower than the corresponding controls, compost-treated plants performed better than mineral-amended plants watered with the same amount of salt. The different plant growth was related to an increased nutritional status. Namely, compost-treated plants showed a larger content of macro- and micronutrients, and a greater accumulation of osmoprotectants, such as soluble sugars and amino acids. Moreover, compost-treated plants showed a larger content of metabolites involved in modulating the response to salt stress, such as molecules related to energy transfer in plants and precursors of Reactive Oxygen Species scavenging compounds. Overall, the better performance of compost-added plants may be attributed to a greater availability of the organic forms of nutrients and to the positive bioactivity of compost-derived humic substances.
Conclusions
Compost application efficiently mitigated salt stress in tomato plants in respect to mineral fertilisation. This alleviating role was associated to the induction of a more efficient metabolic response that increased accumulation of metabolites involved in modulating the salinity stress. Therefore, fertilising with composted agricultural residue may represent a convenient alternative to mineral fertilisers to grow tomato plants in the presence of salt stress.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献