Paclobutrazol as a plant growth regulator

Author:

Desta Bizuayehu,Amare Getachew

Abstract

AbstractPlant growth regulators are chemical substances which govern all the factors of development and growth within plants. The application of plant growth regulators to crops modifies hormonal balance and growth leading to increased yield, enhanced crop tolerance against abiotic stress and improved physiological trait of crops. Paclobutrazol (PBZ) [(2RS, 3RS)-1-(4-chlorophenyl)- 4, 4-dimethyl-2-(1H-1, 2, 4-trizol-1-yl)-pentan-3-ol], is one of the members of triazole family having growth regulating property. The growth regulating properties of PBZ are mediated by changes in the levels of important plant hormones including the gibberellins (GAs), abscisic acid (ABA) and cytokinins (CK). PBZ affects the isoprenoid pathway, and alters the levels of plant hormones by inhibiting gibberellin synthesis and increasing cytokinins level and consequent reduction in stem elongation. When gibberellins synthesis is inhibited, more precursors in the terpenoid pathway accumulate and that resulted in the production of abscisic acid. PBZ is more effective when applied to the growing media and application on the growing medium would give longer absorption time and more absorption of active ingredient than foliar spray. The application of PBZ to crops is important in reducing plant height to prevent lodging and in increasing number and weight of fruits per tree, in improving the fruit quality in terms of increases in carbohydrates, TSS, TSS/TA and decreases acidity. It further reduces evapo-transpiration and decreases plant moisture stress by enhancing the relative water content of leaf area and develops resistance in the plants against biotic and abiotic stresses. In addition, it acts as highly active systemic fungicide and used against several economically important fungal diseases. In this review, the current knowledge and possible applications of PBZ, which can be used to improve the growth, yield and quality of crops, have been reviewed and discussed. The role of PBZ to mitigate the harmful effects of environmental stresses in crops is also examined. Moreover, various biochemical and physiological processes leading to improved crop production under the effect of PBZ are discoursed in detail.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3