EFFECT of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production

Author:

Brtnicky M.,Kintl A.,Holatko J.,Hammerschmiedt T.,Mustafa A.,Kucerik J.,Vitez T.,Prichystalova J.,Baltazar T.,Elbl J.

Abstract

Abstract Background The use of maize-legume mixed culture to produce renewable energy and fertilizers by anaerobic fermentation (AD), while respecting soil quality is a favourable approach in sustainable farming. This paper investigates how the substrate (silage) composition affects the quality of digestate and thus its effect on selected soil parameters (respiration, content of carbon and nitrogen). The high content of remaining nutrients (mainly N) in the AD residual biomass of digestate may increase the biomass of amended plants. One objective of this study was to determine the composition of different digestates produced by anaerobic fermentation of the biomass of intercropped (mixed) cultures. Other objectives focused the digestate impact on soil properties and yield of tested plant (lettuce) in a pot experiment, carried out under controlled conditions in the growth chamber for 6 weeks. Variants tested in the pot experiment included negative control, maize (Zea mays L.) digestate, broad bean (Vicia faba L.) digestate, white lupine (Lupinus albus L.) digestate, maize + broad bean digestate, maize + white lupine digestate. Results As compared to maize, silage from the mixed culture (or legumes) positively affected the properties of digestate (content of N, P, K, Acid Detergent Fibre (ADF), Neutral Detergent Fibre (NDF), Acid Detergent Lignin (ADL). The effect of digestate application on soil parameters depended on the digestate composition: the highest basal respiration was induced by digestates with the increased content of dry matter and ADF – maize + broad bean and white lupine. The broad bean variant showed glucose-induced respiration 0.75 (μg CO2·g-1 h-1), while the lowest value was in the maize variant (0.45 μg CO2·g-1 h-1). The application of digestate derived from the mixed culture increased the plant biomass more than that of single maize silage digestate (+ 14% in the maize + broad bean variant and + 33% in the maize + white lupine variant). Conclusions A potential was found of silage made of leguminous plants to increase the digestate N content. Nevertheless, it is desirable to increase the C/N ratio by raising the amount of C containing substances. Fertilization with digestate showed a potential to increase the plant biomass (compared to the unfertilized control); however, differences among the individual digestates were not observed. The benefit of legume added to the maize-based silage was proven, especially the contribution of nutrients to arable soil. Graphical abstract

Funder

Technology Agency of the Czech Republic

Ministry of Education, Youth and Sports of the Czech Republic

Ministry of Agriculture of the Czech Republic

Ministerstvo Zemědělství

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3