Author:
Fan Yajun,Wang Hanna,Zhang Zhe,Li YuXing,Zhao Ziyi,Ni Xiuzhen
Abstract
Abstract
Background
Plant-promoting bacteria are safer alternatives to pesticides and fertilizers, reduce environmental pollution, and increase crop yields. We isolated an Enterobacter cloacae strain DJ with plant-promoting effects from the rhizosphere soil of a plant (Leymus chinensis (Trin.) Tzvel) in the western region of Jilin Province of China and investigated the mechanisms underlying the adaptation of the DJ bacteria to salinity-alkalinity environments and the molecular mechanisms of the cross-talk between DJ bacteria and cucumber seedlings.
Results
The average diameter of the colonies on the salinity-alkalinity medium after incubation for 24 h was 3.3 cm, and this was significantly higher than the 1.9 cm diameter in ADF medium (p < 0.01). Comparative proteomic analysis revealed that 188 differentially expressed proteins, comprising 116 upregulated and 72 downregulated proteins, significantly changed in salinity-alkalinity groups compared to the control groups. The top one upregulated pathway of KEGG enrichment was bacterial chemotaxis, DJ bacteria adapted to salinity-alkalinity environments by upregulating the genes associated with bacterial chemotaxis. The contents of putrescine in salinity-alkalinity and control groups were 4.73 μg/mL and 3.02 μg/mL, whereas the contents of spermidine were 46.18 ng/mL and 0.34 ng/mL, respectively. Comparing to the control cohorts, the concentrations of both polyamines in the experimental cohorts exhibited statistically significant increases (p < 0.01). The expression of Pt gene encoding polyamine transporter protein was sharply up-regulated in cucumber roots after treatment with DJ bacteria under salinity-alkalinity stress; the expression was more than tenfold higher than that in the control groups. The enzyme activities of POD, SOD, and CAT in cucumber seedlings were higher compared to those in the control groups (p < 0.01). The stem height, number of lateral roots, and fresh weight of cucumber seedlings in the DJ treatment groups were 6.0 cm, 17 roots, and 0.42 g, respectively, whereas those of the control groups were 3.8 cm, 14 roots, and 0.28 g, respectively, with a notable difference between two cohorts (p < 0.01).
Conclusions
DJ bacteria can live in salinity-alkalinity conditions by upregulating the expression of genes associated with chemotaxis. The resistance of cucumber seedlings under salinity-alkalinity conditions through the antioxidant pathway was increased by polyamines produced by DJ bacteria.
Graphical Abstract
Funder
Jilin Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献