Cladosporium cladosporioides (strain Clc/1): a candidate for low-density polyethylene degradation

Author:

Puliga Federico,Zuffi Veronica,Baldo David,Cavatorta Daniel,Zambonelli Alessandra,Francioso Ornella,Sanchez-Cortes Santiago

Abstract

Abstract Background Plastic is one of the most widely used materials worldwide in various fields, including packaging and agriculture. Its large quantities require proper disposal and for this reason more and more attention is paid to the issue of degrading plastic. Thanks to the production of non-specific enzymes, fungi are able to attack complex and recalcitrant xenobiotics such as plastics. In recent years, several spectroscopic methods were used to study the plastic degradation ability of different fungal species. Among these, Fourier transform infrared (FT-IR) and FT-Raman spectroscopy techniques are the most used. Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technique which uses metal nanoparticles (NPs) to enhance the Raman signal of molecules adsorbed on the NPs surface. In this work, the isolation of different fungi from field-collected plastic debris and the ability of these isolates to growth and colonizing the low-density polyethylene (LDPE) were explored by using scanning electron microscope (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and SERS spectroscopies. Results Forty-seven fungal isolates belonging to 10 genera were obtained; among them only 11 were able to grow and colonize the LDPE film. However, after 90 days trial, only one isolate of Cladosporium cladosporioides (Clc/1) was able to carry out the initial degradation of the LDPE film. In particular, based on SEM observations, small cavities and depressed areas of circular shape were visible in the treated samples. Additionally, ATR-FTIR, normal Raman and SERS analyses supported the structural changes observed via SEM. Notably, ATR-FTIR and normal Raman spectra showed a significant decrease in the relative intensity of the methylene group bands. Similarly, the SERS spectra of LDPE after the fungal attack, confirmed the decrease of methylene groups bands and the appearance of other bands referring to LDPE polyphenolic admixtures. Conclusions These results suggest that Cladosporium cladosporioides Clc/1 is able to carry out an initial degradation of LDPE. Moreover, combining ATR-FTIR, Raman and SERS spectroscopies with SEM observations, the early stages of LDPE degradation can be explored without any sample pretreatment. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3