Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation

Author:

Ebrahimi Mohsen,Souri Mohammad Kazem,Mousavi Amir,Sahebani Navazolah

Abstract

Abstract Background Drought is one of the most important environmental stresses that can adversely influence soil properties, plant growth, and productivity of agricultural crops including eggplant as an important vegetable crop. In recent years, the use of agricultural wastes has been reported as a beneficial and sustainable measure in soil water retention and fertility enhancement. In this study, the effect of date palm and pistachio biochar, vermicompost and a combination of biochar and vermicompost was evaluated on eggplant growth, yield and water use efficiency under deficit irrigation. Materials and methods The experiment was done in a split-split plot based on randomized complete block design with three replications and under open field conditions. The main plot was deficit irrigation in three levels of 100, 75 and 50% of plant water requirement (PWR), and the sub-plots were vermicompost in two levels of 0, 1500 g m−2, and biochar in three levels of 0, 500 g m−2 of the pistachio biochar and 500 g m−2 of the date palm biochar. Results The results showed that soil amendment with vermicompost and pistachio biochar and 100% PWR showed the best plant growth and performance. The early crop yield was highest under pistachio biochar and 50% PWR, while the total plant yield was highest under combined application of vermicompost and pistachio biochar at 100% PWR. The plant water use efficiency was maximum under mixed application of vermicompost and pistachio biochar at 50% PWR. Application of both pistachio biochar and vermicompost at 100% PWR resulted in the highest leaf concentrations of nitrogen, phosphorus, potassium, iron and manganese. The highest levels of physiologically important stress metabolites, including malondialdehyde, guaiacol peroxidase, superoxide dismutase and catalase enzymes were found in treatments without amendments or only with vermicompost and 50% PWR. Conclusion The results indicate that under normal and particularly water deficit conditions, vermicompost and biochar increased eggplant vegetative growth, yield and water use efficiency.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3