Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency

Author:

Jia Yiman,Hu ZhengyiORCID,Ba Yuxin,Qi Wenfang

Abstract

Abstract Background The use of biochar-based N fertilizers have been considered among the most effective strategy for reducing nitrogen loss and improving nitrogen use efficiency (NUE). However, effect and mechanism of biochar-coated urea (BCU) controlling the loss of nitrogen from soil and NUE are rarely reported. Methodology In this study, a 65-d culture pot experiment of oilseed rape was used to investigate the impact of BCU on nitrogen leaching, ammonia volatilization, soil nitrogen concentrations, soil pH, nitrogen uptake, NUE and oilseed rape biomass as compared with urea and urea combined with biochar at same nitrogen level. Results Results showed that the application of BCU could minimize nitrogen loss mainly by reducing nitrate leaching loss; which could be attributed to the slow-release performance of BCU, followed by biochar induced adsorption/fixation of nitrogen due to the porous nature and surface functional groups of biochar. However, the application of BCU enhanced ammonia volatilization due to the increase of soil NH4+–N concentration and pH value of microenvironment around urea by BCU. The application of BCU increased NUE by about 20% when compared with urea, since BCU reduced losses of nitrogen fertilizer and increased concentration of nitrogen in the soil as well as nitrogen uptake in oilseed rape. Furthermore, the reduction of nitrogen application by 20% when BCU served as a nitrogen source not only reduced nitrogen loss but significantly improved NUE, with no negative effect on the biomass of oilseed rape. Conclusion BCU can serve as a promising control release nitrogen fertilizer for reducing loss of nitrogen and increasing NUE. However further investigations are required to validate the dosage-effect relationship of BCU on crop yield at the field scale.

Funder

Ministry of Agriculture and Rural Affaris

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3