Exogenous melatonin strengthens saline-alkali stress tolerance in apple rootstock M9-T337 seedlings by initiating a variety of physiological and biochemical pathways

Author:

Xian Xulin,Zhang Zhongxing,Wang Shuangcheng,Cheng Jiao,Gao Yanlong,Ma Naiying,Li Cailong,Wang Yanxiu

Abstract

AbstractMelatonin (MT) is an important plant growth regulator that significantly regulates the growth and development of plants. Previous studies confirmed the effectiveness of MT in improving plant stress tolerance. In this study, annual M9-T337 seedlings were selected as subjects, and five treatments were applied: control (CK), in which only half the concentration of Hoagland was applied; Saline-alkaline stress treatment (SA, 100 mmol·L−1 saline-alkaline solution); melatonin treatment (MT, CK + 200 μmol L−1 exogenous MT); Saline-alkaline + melatonin treatment (MS, SA + 200 μmol L−1 exogenous MT); and saline-alkaline stress + melatonin + inhibitor treatment (HS, additional 100 μmol L−1 p-CPA treatment to MS). The results showed that saline-alkaline stress negatively affected the growth of M9-T337 seedlings by reducing photosynthetic capacity, increasing Na+, promoting reactive oxygen species such as H2O2, and changing the osmotic content and antioxidant system. However, the application of exogenous MT effectively alleviated saline-alkaline damage and significantly promoted the growth of M9-T337 seedlings. It significantly increased plant height, diameter, root length, root surface area, volume and activity. Furthermore, MT alleviated osmotic stress by accumulating proline, soluble sugars, soluble proteins and starch. MT improved photosynthetic capacity by delaying chlorophyll degradation and regulating gas exchange parameters as well as fluorescence parameters in leaves. Additionally, MT reduced the Na+/K+ ratio to reduce ion toxicity by upregulating the expression of Na+ transporter genes (MhCAX5, MhCHX15, MhSOS1, and MhALT1) and downregulating the expression of K+ transporter genes (MhSKOR and MhNHX4). In addition, MT can increase antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase(POD), catalase (CAT), ascorbic acid oxidase (AAO), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR)) in the ASA-GSH cycle and increase ascorbic acid (AsA), reduced glutathione (GSH) and oxidized glutathione (GSSG) levels to counteract the accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and Superoxide anion free radicals (O2), reducing oxidative damage. Exogenous MT promotes M9-T337 seedlings growth under saline-alkaline stress by responding synergistically with auxin (IAA), gibberellin (GA3) and zeatin (ZT) to saline-alkaline stress. Our results confirm that MT has the potential to alleviate Saline-alkaline stress by promoting root growth, increasing biomass accumulation and photosynthetic capacity, strengthening the antioxidant defense system, maintaining ionic balance, the ascorbate–glutathione cycle and the Osmoregulation facilitates and regulates endogenous hormone levels in M9-T337 seedlings. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3