Abstract
Abstract
Background
Drought stress is a critical environmental factor that disturbs plant performance. However, some non-essential elements such as silicon can improve water deficit tolerance by modulating photosynthesis assimilates and compatible solutes production. Therefore, the present work was conducted to modulate polyethylene glycol (PEG)-induced water deficiency under in vitro culture in Damask rose genotypes (Maragheh and Kashan) by nano-silicon (SiO2-NPs) treatment. A completely randomized factorial experiment was used as three concentrations of SiO2-NPs (0, 50, and 100 mg L−1) and five concentrations of PEG (0, 25, 50, 75, and 100 g L−1). Then, the comparative effects of water deficiency on vegetative traits, metabolites, and nutrients were studied.
Results
The drought promoted a significant decrease in chlorophyll, fresh/dry weight, biomass, and an increase in electrolyte leakage. The amount of micro- and macronutrients were affected by drought stress and decreased in both genotypes. In contrast, the activity of polyphenol oxidase (PPO) and total phenolic compounds (TPC) along with biochemical traits was increased. Treatment with SiO2-NPs improved the leaf area index (LAI), chlorophyll, and biomass under severe water deficiency. The concentration of compatible solutes such as carbohydrates, total flavonoid content (TFC), TPC, anthocyanin, and antioxidative capacity enhanced by the application of SiO2-NPs by about twofolded. As well as an increase in PEG concentration, the absorption of nutritional elements such as P, K, Mn, Fe, Zn, and Cu was decreased. However, SiO2-NPs application especially at 100 mg L−1 increased the amount of nutrient absorption.
Conclusions
In general, the drought tolerance in Damask rose was associated mainly with its suitable manipulation of antioxidant production and orderly enhancement of nutrient adsorption, so that the effect of SiO2-NPs in improving the qualitative and quantitative characteristics of ʻKashanʼ was more than that of ʻMaraghehʼ. These results briefly highlight that the SiO2-NPs may provide greater tolerance to drought stress in Damask rose.
Graphical Abstract
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Reference85 articles.
1. Naquvi KJ, Ansari SH, Ali M, Najmi AK. Volatile oil composition of Rosa damascena Mill. (Rosaceae). New Delhi: AkiNik Publications; 2014.
2. Baydar NG, Baydar H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind Crops Prod. 2013;41:375–80.
3. Batooli H, Safaei-Ghomi J. Comparison of essential oil composition of flowers of three Rosa damascena Mill. genotypes from Kashan. J Med Plants. 2012;11:157–66.
4. Seyed Hajizadeh H, Ebadi B, Morshedloo MR, Abdi GA. Morphological and phytochemical diversity among some Iranian Rosa damascena Mill. landraces. Tehran: Islamic Azad University; 2021.
5. Gorji-Chakespari A, Nikbakht AM, Sefidkon F, Ghasemi-Varnamkhasti M, Valero EL. Classification of essential oil composition in Rosa damascena Mill. genotypes using an electronic nose. J Appl Res Med Aromat Plants. 2017;4:27–34.