Nutrition of host plants influence the infectivity of nucleopolyhedrovirus to polyphagous caterpillar, Hyphantria cunea

Author:

Zhao Xudong,Geng Yishu,Qiao Heng,Liu Yu,Hu Tianyi,Xu Wenxuan,Hao Dejun

Abstract

AbstractPlants play an important role in interactions between insect herbivores and their pathogens. The ability of host plants to modify the infectivity of entomopathogens in herbivorous insects has been widely documented. However, the plants’ nutrients have always been neglected as a factor contributing to variation in the susceptibility of insect herbivores to entomopathogens. The fall-webworm (FWW), Hyphantria cunea Drury, is a typical polyphagous caterpillar, and the Hyphantria cunea nucleopolyhedrovirus (HycuNPV) is a distinctly specialized baculovirus for the FWW, which is safe for other organisms and has been effectively used as a biological insecticide against H. cunea in China. In this study, we investigated the nutrient components of four host plant species, i.e., Prunus serrulate, Cerasus serrulate, Camptotheca acuminata, and Populus deltoides, and their effects on the susceptibility of H. cunea larvae to HycuNPV. The HycuNPV-infected larvae fed on P. deltoides leaves exhibited higher survival rates, longer survival times, more food intake, and gained larger body size. These biological parameters were positively correlated with the nitrogen components of host plant leaves. Moreover, the larval antioxidant enzymes exhibited different responses to HycuNPV. HycuNPV infection significantly triggered the catalase (CAT) and prophenoloxidase (PPO) enzyme activity levels of H. cunea larvae. The uninfected larvae fed on poplar leaves induced a robust increase in the POD activity, which could scavenge extra reactive oxygen species and provide a protective effect against the HycuNPV. In conclusion, the plant-mediated effects of HycuNPV on the FWW have been investigated in this study. The nitrogen content in dietary was an essential factor in determining the insect herbivore susceptibility to entomopathogenic viruses, and it helped explain variations in the susceptibility of pests to the entomopathogenic viruses and aid in developing more robust tolerance monitoring assays in the lab that reflect the performance of pests in the field. Graphical Abstract

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3