Molecular evolution and expression assessment of DFRs in apple

Author:

Li Wen-Fang,Gao Ju,Ma Zong-Huan,Hou Ying-Jun,Li Xin,Mao Juan,Chen Bai-Hong

Abstract

Abstract Background Anthocyanins are the secondary metabolites of flavonoids in plants. As a key enzyme in the biosynthetic pathway of anthocyanin, dihydroflavonol 4-reductase (DFR) act as an important regulatory point, but DFR family genes has not been systematically characterized in apple (Malus domestica Borkh.). Methods The members of DFR genes in apple were identified and their gene structure, chromosome distribution, evolutionary relationships, collinearity, cis-component and protein interaction relationships were predicted using bioinformatics methods. The expression patterns of MdDFRs in various organs, such as leaves, fruit flushes, fruits, ripe fruit peels, flowers and stems were analyzed using GeneChip expression array analysis. qRT-PCR was employed to analyze the expression levels of MdDFRs in different apple varieties with varying levels of fruit skin at maturity. Results The apple database revealed 96 DFR genes, which are distributed on 17 chromosomes and can be divided into 3 subfamilies. These 96 DFR genes were mostly composed of α-helix and random coil according to secondary structure prediction, and were mainly expressed in chloroplasts and cytoplasm. MYB binding site involved in flavonoid biosynthetic genes regulation element (MBSI) was identified in the promoter of MdDFR15/76/81/89/90/91/93/94. Lignin/flavonoid synthesis-related elements of MYB recognition site and MYB-binding site were identified in the promoters of MdDFR05/09/13/19/22/24/26/30/31/33/34/46/50/52/54/64/65/69/75/76/79/86. The internal collinearity analysis of the apple MdDFR genome revealed a total of 34 pairs of duplicated gene pairs. Interspecific collinearity analysis showed that there were 66 and 57 homologous gene pairs in apple/tomato and apple/grape, respectively. GeneChip expression array analysis showed that MdDFR72 and MdDFR96 were higher expressed in ripe fruit fleshes and peel, MdDFR01/06/67/49/54/91 were higher expressed in flowers, MdDFR64 was higher expressed in ripe fruit peels and flowers than those of other tissues. Besides, 75 MdDFR proteins interacted directly or indirectly with anthocyanidin synthesis related proteins MdANS, MdF3H, MdMYB1, MdMYBPA1 to form a protein interaction network. Interestingly, MdDFR69 and MdDFR87 had direct interactions with these four proteins, MdDFR64 had direct interactions with MdANS and MdF3H. qRT-PCR analysis showed that the expression levels of MdDFR01/05/31/53/64/69/73/84/87/94/96 were up-regulated with the accumulation of anthocyanins. Conclusions This study lays a foundation for further research on the function of DFR genes in apple. Graphical Abstract

Funder

2023 Gansu Province University Teacher Innovation Fund Project

Double First-Class Major Scientific Research Project of Gansu Provincial Department of Education

Science and Technology Major Project of Gansu Province

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3