Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation

Author:

Hammerschmiedt Tereza,Holatko Jiri,Huska Dalibor,Kintl Antonin,Skarpa Petr,Bytesnikova Zuzana,Pekarkova Jana,Kucerik Jiri,Mustafa Adnan,Radziemska Maja,Malicek Ondrej,Vankova Lenka,Brtnicky Martin

Abstract

Abstract Background Elemental sulfur (S0) is a cost-efficient fertilizer and the least rapidly utilizable source of S for soil microorganisms and plants. Its bacterial-mediated oxidation to sulfates is dependent on particle size. Finely formulated (micronized, nanosized) S0 exerts enhanced oxidation rate and benefit due to nutrient availability and crop nutrition efficiency. Graphene oxide (GO) affects soil properties both negatively and positively. A pot experiment was carried out with lettuce using soil supplemented with S0 in different composition, applied alone or in combination with GO. The following variants were tested: control, GO, micro-S0, micro-S0 + GO, nano-S0, nano-S0 + GO. Results Nanosized S0 improved most of enzyme activities (dehydrogenase, arylsulfatase, N-acetyl-β-d-glucosaminidase, β-glucosidase, phosphatase). However, respirations induced by d-glucose, protocatechuic acid, l-arginine were decreased. GO mitigated negative to neutral effect of micro-S0 in the soil pH, dehydrogenase and urease activity. Furthermore, micro-S0 positively affected basal respiration and respirations induced by d-trehalose and N-acetyl-β-d-glucosamine. Nano-S0 + GO improved plant biomass yield and enzyme activities. However, nano-S0 + GO significantly decreased all substate-induced respirations. Conclusions The benefit of soil treatment with nano-/micro-sized S0 and its combination with GO on soil biological parameters was partially demonstrated. Graphical Abstract

Funder

Ministry of Agriculture of the Czech Republic

Technology Agency of the Czech Republic

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3