Growth and physiological impairments in Fe-starved alfalfa are associated with the downregulation of Fe and S transporters along with redox imbalance

Author:

Rahman Md Atikur,Ahmed Md Bulbul,Alotaibi Fahad,Alotaibi Khaled D.,Ziadi Noura,Lee Ki-Won,Kabir Ahmad HumayanORCID

Abstract

Abstract Background Iron (Fe) is an essential plant nutrient. Its deficiency is a major constraint in crop production systems, affecting crop yield and quality. It is therefore important to elucidate the responses and adaptive mechanisms underlying Fe-deficiency symptoms in alfalfa. Materials and methods The experiment was carried out on 12-day-old alfalfa plants grown in hydroponics under Fe-sufficient and Fe-deficient conditions. Results The Fe-starved alfalfa showed decreased plant biomass, chlorophyll score, PSII efficiency, and photosynthesis performance index in young leaves under low Fe. Further, Fe shortage reduced the Fe, Zn, S and Ca concentration in root and shoot of alfalfa accompanied by the marked decrease of MsIRT1, MsZIP, MsSULTR1;1, MsSULTR1;2 and MsSULTR1;3 transcripts in root and shoot. It indicates that retardation caused by Fe-deficiency was also associated with the status of other elements, especially the reduced Fe and S may be coordinately attributed to the photosynthetic damages in Fe-deficient alfalfa. The ferric chelate reductase activity accompanied by the expression of MsFRO1 in roots showed no substantial changes, indicating the possible involvement of this Strategy I response in Fe-deficient alfalfa. However, the proton extrusion and expression of MsHAI1 were significantly induced following Fe-deficiency. In silico analysis further suggested their subcellular localization in the plasma membrane. Also, the interactome map suggested the partnership of MsFRO1 with plasma membrane H+-ATPase, transcription factor bHLH47, and nitrate reductase genes, while MsHAI1 partners include ferric reductase-like transmembrane component, plasma membrane ATPase, vacuolar-type H-pyrophosphatase, and general regulatory factor 2. In this study, SOD and APX enzymes showed a substantial increase in roots but unable to restore the oxidative damages in Fe-starved alfalfa. Conclusion These findings promote further studies for the improvement of Fe-starved alfalfa or legumes through breeding or transgenic approaches. Graphic Abstract

Funder

International Scientific Partnership Program

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3