Exogenous proline regulates pectin demethylation by rescuing pectin methylesterase functioning of cell wall from Cr(VI) toxicity in rice plants

Author:

Ullah Abid,Lin Yu-Juan,Tian Peng,Yu Xiao-ZhangORCID

Abstract

Abstract Background Plants are equipped with several sophisticated mechanisms to deal with heavy metals (HMs) toxicity. Cell walls, which are rich in pectin, are important in the sequestration and compartmentalization of HMs. Pectin demethylation is carried out by pectin methylesterase (PME), which is a crucial activity in cell walls for the adsorption of HMs. This study focused on the factors that contribute to chromium (Cr) adsorption in rice plants exposed to Cr(VI) treatments without proline (Pro) “Cr(VI)” and with Pro “Pro + Cr(VI)” application. Results The results exhibited that when rice plants were treated with Cr(VI), their PME activity decreased, because Cr(VI) was bound to certain isoforms of PME and prevented the demethylation of pectin. The application of Pro increased PME activity by promoting the transcription of several PME-related genes. These genes were recognized on the basis of their similarity with PME genes in Arabidopsis. Gene expression variation factors (GEVFs) between the “Cr(VI)” and “Pro + Cr(VI)” treatments revealed that OsPME7 and OsPME9 have the highest positive GEVF values than other OsPME genes of rice. In addition, Pro application increased pectin content significantly in rice plants exposed to Cr(VI) stress. Proline application also leads to an increased concentration of Cr in rice roots compared with “Cr(VI)” treatments alone. Conclusions These findings suggest that Pro increased Cr(VI) adsorption in cell walls of rice plants by enhancing the PME activity and pectin content when exposed to “Cr(VI)” treatments, mainly regulated by OsPME7 and OsPME9. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3