Experimental evaluation of the antioxidant and antitumor activities of thyme and basil essential oils and their phenolic constituents: theoretical antioxidant evaluation

Author:

Ramadan Khaled M. A.,El-Beltagi Hossam S.,Bendary Eslam S. A.,Ali Hussein M.

Abstract

Abstract Background Identifying specific biological activities of natural products are of the main concerns worldwide for the use in safe functional food manufacture; essential oils and their components are good candidates in this respect. The present work aims to evaluate the biological activities of basil and thyme oils as well as their phenolic constituents. Using computational methods to predict biological activities are currently effective tools in minimizing and explaining experimental works. Results Chemical composition of thyme and basil oils were determined using GC–MS. The identified phenolic components were thymol (28.21%) and carvacrol (0.47%) in thyme oil and eugenol (11.37%) in basil oil. The antioxidant activity of both oils and their phenolic constituents as expressed by EC50 value were 535.01, 134.37, 176.57, 407.89 and 2.29 µg/mL against DPPH and 131.95, 56.65, 57.15, 82.71and 32.80 µg/mL against hydrogen peroxide, respectively. The order of activity is basil oil > thyme oil while phenolic compound order is eugenol > thymol > carvacrol; reducing power showed the same order. Basil oil showed also higher and good antitumor activity where it reduces the surviving fraction to 38.4% of brain tumor cells (U251) and 61.3% of liver tumor cells (HEPG2) at concentration 10 µg/mL. The antioxidant activity were evaluated theoretically according to the main three mechanisms, Hydrogen-Atom-Transfer (HAT), Single Electron Transfer–Proton Transfer (SET-PT) and the Sequential Proton Loss Electron-Transfer (SPLET); the results proved the experimental order of antioxidant and biological activities, and explained the remarkably higher activities of basil oil and its main phenolic component, eugenol. Conclusion Theoretical calculation can be used successfully to explain and predict the experimental biological activity results. Basil oil and its main phenolic component, eugenol, were found effective as antioxidants. Basil oil was also efficient in reducing the surviving fraction of liver and brain cancer cells where it reduces brain cells even lower than cells treated by doxorubicin, a known anti-cancer agent; thus, basil oil and its main phenolic components, eugenol, can be used safely in food preservation and functional food production. Graphical Abstract

Funder

Deputyship for Research and Innovation, the Ministry of Education in Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3