Author:
Jiang Xiaogang,Ge Kang,Liu Zhi,Chen Nan,Ouyang Aiguo,Liu Yande,Huang Yuyang,Li Jinghu,Hu Mingmao
Abstract
AbstractApple moldy core is a fungus-infested disease that is extremely insidious, usually occurring inside the fruit, making it very difficult to distinguish from the exterior with the naked eye. Using VIS/NIR transmission spectroscopy, this study successfully detected moldy core apples. By combining four wavelength selection algorithms (CARS, CARS-SPA, MC-UVE, and MC-UVE-SPA) with four classifiers (SVM, ELM, KNN, and LDA-KNN), discrimination models were established for two-class and three-class classifications. MC-UVE-SPA-LDA-KNN achieved an AUC of 0.99 and an accuracy of 98.82% for two-class classification, while MC-UVE-SPA achieved an AUC of 0.99 and an accuracy of 97.64% for three-class classification. This confirms MC-UVE-SPA as an effective tool for selecting wavelengths specific to moldy core apples, facilitating precise identification and differentiation of apple states. This study advances dynamic online detection of early-stage moldy core conditions in apples, reducing post-harvest disease occurrence and preserving fruit quality effectively.
Graphical Abstract
Funder
National Key Research and Development Program of China the Science
National Natural Science Foundation of China
Technology Research Project of Education, Department of Jiangxi Province
Publisher
Springer Science and Business Media LLC