Author:
Ryu Da Hye,Cho Jwa Yeong,Hamayun Muhammad,Lee Dong Gyu,Kim Ho-Youn
Abstract
Abstract
Background
Temperature and light are two critical environmental stimuli that greatly impact our agricultural industry. We explored the effects of varying temperature and light conditions on the metabolomics of basil, a plant widely used in cuisine and for medicinal purposes worldwide. Basil plants were subjected to elevated temperatures of 30 °C, 35 °C, and 40 °C, along with two light intensities (D11 and D23).
Results
Our results showed that the maximum shoot length (42.98 cm) was achieved at T30 and D23, the maximum leaf area (6.92 cm) at T30/D11, and the highest number of leaves (472) at T40/D11. However, at the higher temperature of T40, the number of leaves increased, but shoot length and leaf size significantly decreased (p < 0.05). Maxim shoot biomass (81 gm) and root biomass (91.2 gm) was recorded at T35/D23 treatments. Metabolomic studies of basil revealed that rosmarinic acid (RA), and linalool and eugenol were the major phenolic and volatile organic compounds (VOCs) under different growth conditions. RA levels were higher at 30 °C, correlated with elevated shikimate levels, indicating a carbon supply through the TCA cycle. In contrast, the growth conditions of 35 °C/D11 (μmol/m2/d) up-regulated the glyoxylate cycle (fumaric acid and malic acid) as part of stomatal closure, preventing ROS accumulation and resulting in increased VOC emission. Exposure to the higher temperature of 40 °C induced higher amino acid accumulation, improving temperature stresstolerance.
Conclusions
This study suggests that elevated temperature and light intensity affected the overall health of basil plants by modulating underlying growth mechanisms. Furthermore, elevated temperature plays a vital role in plant defense mechanisms by mediating the production of secondary metabolites associated with plant defense responses.
Graphical Abstract
Funder
Korea Institute of Science and Technology, South Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献