Author:
Souri Mohammad Kazem,Tohidloo Ghasem
Abstract
Abstract
Background
Soil salinity is a real challenge in nowadays crop production in many regions. Various strategies have been applied to increase plant salinity tolerance. Salicylic acid (SA) frequently has been reported to increase plant salinity tolerance; however, the comparative efficiency of soil (root) or foliar application of SA has not been well tested yet. In this study, the effects of root or leaf pretreatment, and leaf treatment with 100 mg L−1 salicylic acid were evaluated on growth characteristics of tomato seedlings (Solanum lycopersicum Mill) under salinity stress. The plants were grown 3 weeks in sand that were fed with Hoagland nutrient solution with or without 100 mM NaCl.
Results
The results showed that salinity significantly reduced tomato seedling growth and traits of plant height, leaf area, shoot fresh weight, and nutrient concentration of potassium, calcium, iron and zinc compared to control plants. However, leaf SPAD value, root fresh and dry weights, leaf concentration of sodium, proline and soluble sugars were significantly increased under 100 mM NaCl salinity compared to control plants. Application of salicylic acid particularly by foliar pretreatment increased the tomato plant growth and those traits that were reduced by NaCl salinity. Application of SA, particularly foliar pretreatment, also increased the root fresh and dry weights, leaf proline and soluble sugars concentrations as compared with salinity alone. Foliar SA pretreatment significantly increased leaf K and Fe concentrations, whereas leaf Ca was significantly increased by either root or leaf pretreatment with SA under salinity.
Conclusion
The results indicate that the most to least effective method of SA application was leaf pretreatment, root pretreatment and leaf treatment, respectively, to recover the reduced growth parameters of tomato plant under salinity stress.
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献