Legume-potato rotation affects soil physicochemical properties, enzyme activity, and rhizosphere metabolism in continuous potato cropping

Author:

Wang Yong,Shi Mingfu,Zhang Ruyan,Zhang Weina,Liu Yuhui,Sun Dexiang,Wang Xingxing,Qin Shuhao,Kang Yichen

Abstract

Abstract Background Continuous cropping can reduce soil quality and affect rhizosphere metabolism, ultimately reducing crop yield. Crop rotation can mitigate the damage caused by continuous cropping, but different crop rotation patterns respond differently to soil quality and rhizosphere metabolism. We investigated the effects of different cropping patterns on soil physicochemical properties, enzyme activities, microbial quantity, and rhizosphere metabolism of continuous potato cropping based on a long-term field study from 2018 to 2022. The experiment was set up with the following three treatments: potato (Solanum tuberosum L.)-potato-potato-potato-potato (CK), potato-potato-potato-pea (Pisum arvense L.)-potato (T1), and potato-potato-potato-faba bean (Vicia faba L.)-potato (T2). Results The results showed that pea-potato rotation (T1) and faba bean-potato rotation (T2) significantly improved soil physicochemical properties and microbial quantity, enhanced enzyme activity, and increased yield by 21.19% and 28.38%, respectively, compared with the continuous potato crop. Non-targeted metabolomics analysis showed that the differential metabolites of pea-potato and faba bean-potato rotation were mainly nucleotides, organic acids and derivatives, and flavonoids compared to continuous potato cropping. These differential metabolites are mainly enriched in the ABC transporter, purine metabolism, pyrimidine metabolism, and phenylalanine metabolism pathways. Combined analyses showed that legume-potato rotations improved soil physicochemical properties, enzyme activities, and microbial quantity of continuous potato cropping, ultimately increasing tuber yields. In addition, correlation analyses showed that differential metabolites significantly enriched in purine and phenylalanine metabolism (l-Tyrosine, Trans-Cinnamic acid, Guanine, and Adenine) were also strongly associated with these measurements. Conclusions Therefore, we conclude that legume-potato rotations modulate the abundance and function of rhizosphere metabolites and significantly alter the low molecular metabolite profile of the soil under continuous potato conditions. Some of these important metabolites may play a part in the cycling of nutrients in the soil, making its physicochemical properties and microbial quantity better, raising the activity of soil enzymes, and ultimately increasing the yield of potato tubers. The above results indicate that legume-potato rotation has a positive effect on continuous potato soils. It lays a solid foundation for revealing the complex molecular network and metabolic pathways of microbial communities in soil after legume crop rotation. Graphical Abstract

Funder

Outstanding Graduate Student Innovation Star Project in Gansu Province

earmarked fund for Agriculture Research System of China

National Natural Science Foundation of China

Science and Technology Innovation Fund of Gansu Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3