Carbon-enriched organic amendments differently affect the soil chemical, biological properties and plant biomass in a cultivation time-dependent manner

Author:

Holatko J.,Hammerschmiedt T.,Mustafa A.,Kintl A.,Radziemska M.,Baltazar T.,Jaskulska I.,Malicek O.,Latal O.,Brtnicky M.

Abstract

Abstract Background The farmyard manure application maintains quality of arable soils, provides nutrients, mitigates climate change by soil carbon sequestration. Biochar and other complex carbon rich amendments may stabilize organic matter derived by composting and decelerate organic carbon mineralization. However, how the combined utilization of biochar, humic substances and manure effects on soil chemical and biological properties have been least explored, especially their effect on soil basal and substrate induced respirations are needed to be further explored. Therefore, the potential of biochar and Humac (a commercial humic substances product) in combination with manure to improve the soil properties and plant growth was investigated in this experiment using barley under a short-term (12 weeks) and maize under long-term (following 12 weeks, a total of 24 weeks) cultivation. Results In the early phase of cultivation (12 weeks) Humac- or biochar-enriched manures (M + H, M + B, respectively) enhanced the contents of nutrient elements (carbon + 5.6% and + 7%, nitrogen + 6.7% and − 5%, sulphur − 7.9% and + 18.4%), the activity of enzymes including (β-glucosidase + 32% and + 9.6%, phosphatase + 11% and 6.3%), and dry aboveground biomass (+ 21% and + 32%), compared to the control and manure-treated soil. However, these impacts of M + H and M + B manures were reduced under longer period, i.e., at the experiment end (24 weeks). After 24 weeks of cultivation, a decrease in absolute values of all determined enzyme activities indicated putative reduction of mineralization rate due to presumed higher recalcitrance of manure-derived organic matter, with Humac, biochar amendments. Increased stability of soil organic matter reduced microbial activity due to lower availability of nutrients. Possibly, the shortened period of manure maturation could help preserve a higher amount of less degraded organic matter in the enriched manures to counteract these observed features. Conclusions We summarized that the biochar and humic substances combined with manure have the potential to improve the soil characteristics, plant biomass and soil health indicators but the improvements faded away in a cultivation time-dependent manner. Further studies are required to explore the structure and functioning of microbial activities under long-term experimental conditions. Graphical abstract

Funder

Ministry of Agriculture of the Czech Republic

Ministry of Education, Youth and Sports of the Czech Republic

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3