Low-frequency glow discharge (LFGD) plasma treatment enhances maize (Zea mays L.) seed germination, agronomic traits, enzymatic activities, and nutritional properties

Author:

Sohan Md. Sohanur Rahman,Hasan Mahedi,Hossain Md. Forhad,Sajib Salek Ahmed,Khalid-Bin-Ferdaus Khandaker Md.,Kabir Ahmad Humayun,Rashid Md. Mamunur,Talukder Mamunur Rashid,Elseehy Mona M.,El-Shehawi Ahmed M.,Reza Md AbuORCID

Abstract

Abstract Background Plasma technology is an emerging sector in agriculture. The effect of low-frequency glow discharge (LFGD) plasma at medium pressure (10 torr) on maize morpho-physiological and agronomical behavior was investigated in the current studies. The LFGD plasma act as a secondary messenger to improve maize production. This cutting-edge plasma technology can be used in agriculture to boost agronomic possibilities. Materials and methods Maize seeds were treated with LFGD Ar + Air gas plasma for 30 s, 60 s, 90 s, and 120 s. The gas ratio of Ar + Air was 1:99. Plasma was produced with a high voltage (1–6 kV) and low (3–5 kHz) frequency power supply across the electrodes. The internal pressure was maintained at ~ 10 torrs with a vacuum pump in the plasma chamber. Inside the plasma production chamber, the gas flow rate was maintained at 1 L/min. Results Effect of LFGD Ar + Air plasma on seed germination, and growth parameters including, shoot length, root length, fresh weight, dry weight, plant height, stem diameter, and chlorophyll were measured and in comparison with the control the parameter scores increased by 4.89%, 3.18%, 1.77%, 5.53%, 1.90%, 5.16%, 1.90%, 1.98%, respectively. The SEM image of the seeds surface demonstrated remarkable changes caused by plasma treatment. In roots, APX and SOD activities improved by only 0.022% and 0.64%, whereas, in shoots their activities showed a 0.014% and 0.25% increment compared to control. Further, H2O2, soluble protein, and sugar content increased by 0.12%, 0.33%, 2.50% and 1.15%, 1.41%, 2.99%, 1.16% in shoots and roots, respectively, while NO showed no significant changes in plants. Interestingly, notable improvement were found in nutritional properties (protein 0.32%, fat 0.96%, fiber 0.22%, ash 0.31%, grain iron 1.77%, shoots iron 7.61%, and manganese 6.25%), while the moisture content was reduced by 0.93% which might be useful in prolonged seed storage and the long life viability of the seeds. However, zinc (Zn) content in maize seedlings from plasma-treated seeds showed no significant change. Conclusion The present study revealed that LFGD Ar + Air gas plasma is associated with the elevation of ROS in leaves and roots, which in turn improves the seed germination rate, agronomic traits, growth, enzymatic activity, and nutritional supplement in maize. Graphical Abstract

Funder

Bangladesh and Taif University Researchers Supporting Project

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3