Comprehensive transcriptomics and metabolomics revealed the antifungal mechanism of Cymbopogon citratus essential oil nanoemulsion against Fusarium solani

Author:

Wen JinRui,Liao HongXin,Nie HongYan,Ling CuiQiong,Zhang LiYan,Xu FuRong,Dong Xian

Abstract

Abstract Background Fusarium solani (F. solani) is the main pathogen causing root rot of Panax notoginseng (Burk.) F. H. Chen (P. notoginseng). Cymbopogon citratus (DC.) Stapf (C. citratus) essential oil (EO) is a mixture of various active ingredients with good antifungal effects and no residue. However, due to its hydrophobicity and oxidation, its bioavailability is low. Results In this study, EO was made into a nanoemulsion using Tween-80 and anhydrous ethanol by ultrasonication. The antifungal activity of the traditional emulsion (TEO) and C. citratus nanoemulsion (NEO) was compared by measuring the effects on spores and mycelia and in vivo assays. The components of EO, TEO, and NEO were analyzed by GC‒MS, and the inhibitory mechanism of the emulsion against fungi was revealed by combining transcriptomics and metabolomics. The prepared NEO was a clear and transparent homogeneous liquid with a particle size of 15.86 ± 1.96 nm. It was an oil-in-water nanoemulsion and maintained good stability in different environments. The contents of antifungal components such as citronellal and linalool in NEO were significantly higher than those in TEO. The antifungal effect of NEO against F. solani was increased by 8 times compared with that of TEO. Through transcriptomic and metabolomic analyses, it was found that both NEO and TEO inhibited the fungi by destroying the cell membrane, thereby affecting the ribosome, meiosis and TCA cycle of the fungi, and NEO had a deeper effect than TEO. NEO also inhibited the gene expression of the CYR1 enzyme and decreased the amount of d-trehalose, thus inhibiting the germination of spores and thereby affecting the growth of mycelia. Conclusions This study not only solved the problem of EO insoluble in water and low bioavailability but also greatly improved the antifungal activity, revealing the antifungal mechanism and the reason for the enhancement of NEO activity. It provides theoretical research for further development and utilization of EO to produce environmentally friendly pesticides or fertilizers and alleviate root rot of medicinal plants. Graphical Abstract

Funder

Yunnan Provincial Key Laboratory for Sustainable Utilization of Southern Medicine

the National Natural Science Foundation of China

Yunnan Provincial Science and Technology Plan-Basic Research Project

Wang Yuan Chao Expert Workstation in Yunnan Province

Yunnan Provincial Science and Technology DepartmentApplied Basic Research Joint Special Funds of Yunnan University of Traditional Chinese Medicine

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3